Annette-Enrica Surkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7737179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	12.6	868
2	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	13.6	633
3	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	13.7	265
4	Photocatalytic Water Reduction with Copperâ€Based Photosensitizers: A Nobleâ€Metalâ€Free System. Angewandte Chemie - International Edition, 2013, 52, 419-423.	13.8	243
5	Selective Catalytic Hydrogenation of Heteroarenes with <i>N</i> -Graphene-Modified Cobalt Nanoparticles (Co ₃ O ₄ –Co/NGr@î±-Al ₂ O ₃). Journal of the American Chemical Society, 2015, 137, 11718-11724.	13.7	223
6	Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chemical Communications, 2011, 47, 10972.	4.1	200
7	Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications, 2016, 7, 11326.	12.8	179
8	Lightâ€Driven Hydrogen Generation: Efficient Ironâ€Based Water Reduction Catalysts. Angewandte Chemie - International Edition, 2009, 48, 9962-9965.	13.8	176
9	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2020, 59, 15849-15854.	13.8	156
10	A Nobleâ€Metalâ€Free System for Photocatalytic Hydrogen Production from Water. Chemistry - A European Journal, 2013, 19, 15972-15978.	3.3	155
11	A Stable Nanocobalt Catalyst with Highly Dispersed CoN _{<i>x</i>} Active Sites for the Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2017, 56, 16616-16620.	13.8	135
12	Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nature Protocols, 2015, 10, 548-557.	12.0	131
13	Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and Câ•O Bonds. Journal of the American Chemical Society, 2016, 138, 8781-8788.	13.7	118
14	Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nature Protocols, 2015, 10, 916-926.	12.0	115
15	Selective Semihydrogenation of Alkynes with N-Graphitic-Modified Cobalt Nanoparticles Supported on Silica. ACS Catalysis, 2017, 7, 1526-1532.	11.2	110
16	General and selective reductive amination of carbonyl compounds using a core–shell structured Co ₃ O ₄ /NGr@C catalyst. Green Chemistry, 2014, 16, 4535-4540.	9.0	93
17	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie - International Edition, 2017, 56, 11242-11247.	13.8	83
18	A Convenient and General Rutheniumâ€Catalyzed Transfer Hydrogenation of Nitro―and Azobenzenes. Chemistry - A European Journal, 2011, 17, 14375-14379.	3.3	75

#	Article	IF	CITATIONS
19	Synthesis of Nickel Nanoparticles with Nâ€Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 2016, 8, 129-134.	3.7	66
20	Co-based heterogeneous catalysts from well-defined α-diimine complexes: Discussing the role of nitrogen. Journal of Catalysis, 2017, 351, 79-89.	6.2	65
21	Synthesis of Amines by Reductive Amination of Aldehydes and Ketones using Co ₃ O ₄ /NGr@C Catalyst. ChemCatChem, 2015, 7, 62-64.	3.7	60
22	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	11.2	56
23	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	13.6	56
24	Electron- and Energy-Transfer Processes in a Photocatalytic System Based on an Ir(III)-Photosensitizer and an Iron Catalyst. Journal of Physical Chemistry Letters, 2014, 5, 1355-1360.	4.6	44
25	Synthesis of cobalt nanoparticles by pyrolysis of vitamin B ₁₂ : a non-noble-metal catalyst for efficient hydrogenation of nitriles. Catalysis Science and Technology, 2018, 8, 499-507.	4.1	34
26	A Stable Nanocobalt Catalyst with Highly Dispersed CoN _{<i>x</i>} Active Sites for the Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2017, 129, 16843-16847.	2.0	33
27	Electrochemical Detection of DNA Melting Curves by Means of Heated Biosensors. Electroanalysis, 2009, 21, 1119-1123.	2.9	31
28	Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chinese Journal of Catalysis, 2019, 40, 1679-1685.	14.0	27
29	1â€(Arylalkenyl)pyrenes – Synthetic, Structural, Photophysical, Theoretical, and Electrochemical Investigations. European Journal of Organic Chemistry, 2011, 2011, 5261-5271.	2.4	26
30	Direct electrochemistry of horseradish peroxidase immobilized in a chitosan–[C4mim][BF4] film: Determination of electrode kinetic parameters. Bioelectrochemistry, 2008, 74, 183-187.	4.6	25
31	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie, 2017, 129, 11394-11399.	2.0	24
32	Kinetics of the labeling reactions of thymine, cytosine and uracil with osmium tetroxide bipyridine. Mikrochimica Acta, 2009, 166, 197-201.	5.0	19
33	Hybridization detection of enzyme-labeled DNA at electrically heated electrodes. Analytical and Bioanalytical Chemistry, 2013, 405, 3907-3911.	3.7	18
34	Straightforward synthesis of tetraalkynylpyrazines and their photophysical properties. Organic and Biomolecular Chemistry, 2016, 14, 1442-1449.	2.8	14
35	Pyrimidopteridine <i>N</i> â€Oxide Organic Photoredox Catalysts: Characterization, Application and Nonâ€Covalent Interaction in Solid State. Chemistry - A European Journal, 2019, 25, 4325-4329. 	3.3	13
36	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2020, 132, 15983-15988.	2.0	13

#	Article	IF	CITATIONS
37	From the Precursor to the Active State: Monitoring Metamorphosis of Electrocatalysts During Water Oxidation by <i>In Situ</i> Spectroscopy. ChemElectroChem, 2017, 4, 2117-2122.	3.4	11
38	Impact of the Co : Cu Ratio in CoCuâ€Containing Oxidic Solids on their Activity for the Waterâ€Splitting Reaction. ChemElectroChem, 2017, 4, 2109-2116.	3.4	8
39	Synthesis of furo[3,2- <i>b</i> :4,5- <i>b</i> ′]diindoles and their optical and electrochemical properties. Organic and Biomolecular Chemistry, 2018, 16, 6543-6551.	2.8	7
40	Control of Bridging Ligands in [(V2O3)2(RXO3)4âŠ,F]â^ Cage Complexes: A Unique Way To Tune Their Chemical Properties. Organometallics, 2014, 33, 4905-4910.	2.3	6
41	Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124383.	4.7	5
42	Highly Scalable Conversion of Blood Protoporphyrin to Efficient Electrocatalyst for CO 2 â€ŧo O Conversion. Advanced Materials Interfaces, 2021, 8, 2100067.	3.7	4
43	Photophysical and Electrochemical Properties of Pyrimidopteridineâ€Based Organic Photoredox Catalysts. ChemPhotoChem, 2021, 5, 999-1003.	3.0	3
44	Palladium-catalyzed synthesis and fluorescence study of 2,3-diaryl-5-ethynylbenzo[e]indoles. Tetrahedron, 2017, 73, 3407-3414.	1.9	2