Myeong Min Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7737141/publications.pdf

Version: 2024-02-01

40 papers

3,927 citations

236925 25 h-index 39 g-index

40 all docs

40 docs citations

40 times ranked

4261 citing authors

#	Article	IF	Citations
1	WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning. Cell, 1999, 99, 473-483.	28.9	543
2	Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36, 1100-1109.	17.5	506
3	The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development (Cambridge), 2003, 130, 6431-6439.	2.5	375
4	A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis. PLoS Genetics, 2012, 8, e1002446.	3.5	306
5	Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback. Plant Cell, 2002, 14, 611-618.	6.6	221
6	Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2166-2171.	7.1	194
7	Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Molecular Biology, 2008, 67, 659-670.	3.9	174
8	BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis. Molecular Plant, 2016, 9, 447-460.	8.3	170
9	Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Developmental Biology, 2007, 311, 566-578.	2.0	157
10	POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development (Cambridge), 2006, 133, 4691-4698.	2.5	132
11	The <i>MYB23</i> Gene Provides a Positive Feedback Loop for Cell Fate Specification in the <i>Arabidopsis</i> Root Epidermis Â. Plant Cell, 2009, 21, 1080-1094.	6.6	130
12	Heterologous Expression and Molecular and Cellular Characterization of CaPUB1 Encoding a Hot Pepper U-Box E3 Ubiquitin Ligase Homolog. Plant Physiology, 2006, 142, 1664-1682.	4.8	106
13	The WEREWOLF MYB protein directly regulates CAPRICEtranscription during cell fate specification in the Arabidopsis root epidermis. Development (Cambridge), 2005, 132, 4765-4775.	2.5	105
14	Key Divisions in the Early Arabidopsis Embryo Require POL and PLL1 Phosphatases to Establish the Root Stem Cell Organizer and Vascular Axis. Developmental Cell, 2008, 15, 98-109.	7.0	92
15	Cell Fate in the Arabidopsis Root Epidermis Is Determined by Competition between WEREWOLF and CAPRICE Â Â. Plant Physiology, 2011, 157, 1196-1208.	4.8	86
16	Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant Journal, 2007, 49, 442-451.	5.7	77
17	Biotic and Abiotic Stress-Related Expression of 1-Aminocyclopropane-l-carboxylate Oxidase Gene Family in Nicotiana glutinosa L Plant and Cell Physiology, 1998, 39, 565-573.	3.1	75
18	Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L) flowers during senescence. Journal of Plant Physiology, 1997, 151, 68-73.	3.5	67

#	Article	IF	CITATIONS
19	Nuclear Trapping Controls the Position-Dependent Localization of CAPRICE in the Root Epidermis of Arabidopsis. Plant Physiology, 2013, 163, 193-204.	4.8	50
20	The Arabidopsis thaliana NGATHA transcription factors negatively regulate cell proliferation of lateral organs. Plant Molecular Biology, 2015, 89, 529-538.	3.9	47
21	BAK7 Displays Unequal Genetic Redundancy with BAK1 in Brassinosteroid Signaling and Early Senescence in Arabidopsis. Molecules and Cells, 2010, 29, 259-266.	2.6	40
22	Characterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. Plant Molecular Biology, 1997, 34, 371-382.	3.9	38
23	Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots. Molecular Plant, 2016, 9, 1197-1209.	8.3	37
24	Regulation of the Cell Expansion Gene RHD3 during Arabidopsis Development. Plant Physiology, 2002, 129, 638-649.	4.8	36
25	<i>WEREWOLF</i> , a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of <i>FT</i> mRNA Stability Â. Plant Physiology, 2011, 156, 1867-1877.	4.8	35
26	TORNADO1 regulates root epidermal patterning through the <i>WEREWOLF </i> pathway in <i>Arabidopsis thaliana </i> Plant Signaling and Behavior, 2015, 10, e1103407.	2.4	23
27	QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis. Nature Communications, 2019, 10, 1744.	12.8	23
28	Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. Molecules and Cells, 2018, 41, 1033-1044.	2.6	17
29	Distinct Signaling Mechanisms in Multiple Developmental Pathways by the SCRAMBLED Receptor of Arabidopsis. Plant Physiology, 2014, 166, 976-987.	4.8	15
30	A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiologia Plantarum, 2006, 126, 060127022051002-???.	5. 2	9
31	POLTERGEIST and POLTERGEIST-LIKE1 are essential for the maintenance of post-embryonic shoot and root apical meristems as revealed by a partial loss-of-function mutant allele of pll1 in Arabidopsis. Genes and Genomics, 2020, 42, 107-116.	1.4	9
32	Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner. BMB Reports, 2020, 53, 160-165.	2.4	7
33	ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2015, 465, 587-593.	2.1	5
34	Brassinosteroid-Insensitive 1-Associated Receptor Kinase 1 Modulates Abscisic Acid Signaling by Inducing PYR1 Monomerization and Association With ABI1 in Arabidopsis. Frontiers in Plant Science, 2022, 13, 849467.	3.6	5
35	WEREWOLF and ENHANCER of GLABRA3 are interdependent regulators of the spatial expression pattern of GLABRA2 in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 467, 94-100.	2.1	4

Biochemical characteristics of S-adenosylmethionine decarboxylase from carnation (Dianthus) Tj ETQq $0\,0\,0\,$ rgBT /Oyerlock $10\,$ Tf $50\,62\,$ To $2.1\,$

36

#	Article	IF	CITATIONS
37	Effects of methyl jasmonate (MeJA) on the dark-induced senescence in oat (Avena sativa L.) leaf segments. Journal of Plant Biology, 1997, 40, 9-14.	2.1	3
38	Defective Quiescent Center/AtTRS85 Encoding a TRAPPIII-specific Subunit Required for the Trans-golgi Network/Early Endosome Integrity is Essential for the Proper Root Development in Arabidopsis. Journal of Plant Biology, 2020, 63, 23-31.	2.1	2
39	SHOOT MERISTEMLESS is Required for the Proper Internode Patterning and the Sepal Separation in Arabidopsis. Journal of Plant Biology, 2020, 63, 33-42.	2.1	2
40	Root development inarabidopsis thaliana: attraction from underground. Journal of Plant Biology, 2007, 50, 306-314.	2.1	1