Delbert L Smee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7737026/publications.pdf Version: 2024-02-01

DELREDT | SMEE

#	Article	IF	CITATIONS
1	The Sensory Ecology of Nonconsumptive Predator Effects. American Naturalist, 2014, 184, 141-157.	2.1	139
2	CLAMMING UP: ENVIRONMENTAL FORCES DIMINISH THE PERCEPTIVE ABILITY OF BIVALVE PREY. Ecology, 2006, 87, 1587-1598.	3.2	114
3	Hard Clams (Mercenaria mercenaria) Evaluate Predation Risk Using Chemical Signals from Predators and Injured Conspecifics. Journal of Chemical Ecology, 2006, 32, 605-619.	1.8	100
4	Ecological consequences of chemically mediated prey perception. Journal of Chemical Ecology, 2002, 28, 1953-1970.	1.8	87
5	A review of predator diet effects on prey defensive responses. Chemoecology, 2016, 26, 83-100.	1.1	59
6	Predators influence the tidal distribution of oysters (Crassostrea virginica). Marine Biology, 2014, 161, 1557-1564.	1.5	51
7	Turbidity interferes with foraging success of visual but not chemosensory predators. PeerJ, 2015, 3, e1212.	2.0	47
8	Alteration of sensory abilities regulates the spatial scale of nonlethal predator effects. Oecologia, 2008, 156, 399-409.	2.0	44
9	Turbidity influences trophic interactions in estuaries. Limnology and Oceanography, 2014, 59, 2002-2012.	3.1	42
10	Mangrove expansion into salt marshes alters associated faunal communities. Estuarine, Coastal and Shelf Science, 2017, 187, 306-313.	2.1	41
11	Hydrodynamic sensory stressors produce nonlinear predation patterns. Ecology, 2010, 91, 1391-1400.	3.2	39
12	Type and nature of cues used by Nucella lapillus to evaluate predation risk. Journal of Experimental Marine Biology and Ecology, 2010, 396, 10-17.	1.5	36
13	Green Crab (Carcinus maenas) Foraging Efficiency Reduced by Fast Flows. PLoS ONE, 2011, 6, e21025.	2.5	33
14	Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28160-28166.	7.1	29
15	Macrofauna using intertidal oyster reef varies in relation to position within the estuarine habitat mosaic. Marine Biology, 2017, 164, 1.	1.5	28
16	Phenotypic plasticity in oysters (<i>Crassostrea virginica</i>) mediated by chemical signals from predators and injured prey. Invertebrate Biology, 2016, 135, 97-107.	0.9	25
17	Turbidity alters estuarine biodiversity and species composition. ICES Journal of Marine Science, 2020, 77, 379-387.	2.5	25
18	The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. Global Change Biology, 2022, 28, 3163-3187.	9.5	25

Delbert L Smee

#	Article	IF	CITATIONS
19	Biogeographic variation in behavioral and morphological responses to predation risk. Oecologia, 2013, 171, 961-969.	2.0	24
20	Changes in Seagrass Species Composition in Northwestern Gulf of Mexico Estuaries: Effects on Associated Seagrass Fauna. PLoS ONE, 2014, 9, e107751.	2.5	18
21	Effects of black mangrove Avicennia germinans expansion on salt marsh nekton assemblages before and after a flood. Hydrobiologia, 2017, 803, 283-294.	2.0	15
22	Intraspecific variation influences natural settlement of eastern oysters. Oecologia, 2013, 173, 947-953.	2.0	14
23	Two-tiered defense strategy may compensate for predator avoidance costs of an ecosystem engineer. Marine Biology, 2018, 165, 1.	1.5	13
24	Eastern Oysters <i>Crassostrea virginica</i> Produce Plastic Morphological Defenses in Response to Crab Predators Despite Resource Limitation. Biological Bulletin, 2017, 233, 144-150.	1.8	11
25	Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters <i>Crassostrea virginica</i> than scavenging blue crabs. PeerJ, 2017, 5, e3042.	2.0	11
26	Environmental Drivers of Seagrass-Associated Nekton Abundance Across the Northern Gulf of Mexico. Estuaries and Coasts, 2021, 44, 2279-2290.	2.2	10
27	Environmental gradients influence biogeographic patterns of nonconsumptive predator effects on oysters. Ecosphere, 2020, 11, e03260.	2.2	7
28	Eat or be eaten? Modifications of Aplysia californica feeding behaviour in response to natural aversive stimuli. Animal Behaviour, 2016, 120, 123-133.	1.9	6
29	Cloudy with a chance of mesopredator release: Turbidity alleviates topâ€down control on intermediate predators through sensory disruption. Limnology and Oceanography, 2020, 65, 2278-2290.	3.1	6
30	Changes in arthropod communities as black mangroves Avicennia germinans expand into Gulf of Mexico salt marshes. Arthropod-Plant Interactions, 2019, 13, 465-475.	1.1	5
31	Dazed, confused, and then hungry: pesticides alter predator–prey interactions of estuarine organisms. Oecologia, 2019, 189, 815-828.	2.0	4
32	Use of predator cues to bolster oyster resilience for aquaculture and reef restoration. Aquaculture, 2021, 538, 736553.	3.5	4
33	Organophosphate Pesticides Alter Blue Crab (Callinectes sapidus) Behavior in Single and Consecutive Exposures. Archives of Environmental Contamination and Toxicology, 2018, 75, 134-144.	4.1	3
34	Storms promote ecosystem resilience by alleviating fishing. Current Biology, 2020, 30, R869-R870.	3.9	3
35	Effects of Flow on the Behavior of the Southern Oyster DrillStramonita haemastomain Response to Exudates from Oysters and Oyster Reef Fauna. Journal of Shellfish Research, 2012, 31, 93-100.	0.9	1