MarÃ-a Esther Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736657/publications.pdf

Version: 2024-02-01

567281 454955 160 1,824 15 30 citations h-index g-index papers 171 171 171 1125 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Traditional Machine Learning Models and Bidirectional Encoder Representations From Transformer (BERT)–Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study. JMIR Medical Informatics, 2022, 10, e34492.	2.6	13
2	EABlock., 2022,,.		4
3	Efficient semantic summary graphs for querying large knowledge graphs. International Journal of Information Management Data Insights, 2022, 2, 100082.	9.7	2
4	Responsible Knowledge Management in Energy Data Ecosystems. Energies, 2022, 15, 3973.	3.1	5
5	Compact representations for efficient storage of semantic sensor data. Journal of Intelligent Information Systems, 2021, 57, 203.	3.9	2
6	Analyzing a Knowledge Graph of IndustryÂ4.0 Standards. , 2021, , .		4
7	Enhancing virtual ontology based access over tabular data with Morph-CSV. Semantic Web, 2021, 12, 869-902.	1.9	10
8	Trav-SHACL: Efficiently Validating Networks of SHACL Constraints. , 2021, , .		14
9	Calibrating Mini-Mental State Examination Scores to Predict Misdiagnosed Dementia Patients. Applied Sciences (Switzerland), 2021, 11, 8055.	2.5	2
10	IOTA: Interlinking of heterogeneous multilingual open fiscal DaTA. Expert Systems With Applications, 2020, 147, 113135.	7.6	4
11	No one is perfect: Analysing the performance of question answering components over the DBpedia knowledge graph. Web Semantics, 2020, 65, 100594.	2.9	13
12	Bias in dataâ€driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1356.	6.8	265
13	Compacting frequent star patterns in RDF graphs. Journal of Intelligent Information Systems, 2020, 55, 561-585.	3.9	7
14	A Knowledge Graph for Industry 4.0. Lecture Notes in Computer Science, 2020, , 465-480.	1.3	32
15	Chapter 5 Federated Query Processing. Lecture Notes in Computer Science, 2020, , 73-86.	1.3	5
16	Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings. Lecture Notes in Computer Science, 2020, , 179-194.	1.3	9
17	FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation. Lecture Notes in Computer Science, 2020, , 276-293.	1.3	12
18	Falcon 2.0. , 2020, , .		39

#	Article	IF	Citations
19	SDM-RDFizer., 2020,,.		41
20	Chapter 9 Survey on Big Data Applications. Lecture Notes in Computer Science, 2020, , 149-164.	1.3	3
21	Chapter 8 Context-Based Entity Matching for Big Data. Lecture Notes in Computer Science, 2020, , 122-146.	1.3	3
22	Semantic Data Integration Techniques for Transforming Big Biomedical Data into Actionable Knowledge. , 2019, , .		4
23	iASiS: Towards Heterogeneous Big Data Analysis for Personalized Medicine. , 2019, , .		6
24	Summarizing Entity Temporal Evolution in Knowledge Graphs. , 2019, , .		6
25	Transforming Heterogeneous Data into Knowledge for Personalized Treatments—AÂUse Case. Datenbank-Spektrum, 2019, 19, 95-106.	1.3	14
26	Semantic Data Integration of Big Biomedical Data for Supporting Personalised Medicine. Studies in Computational Intelligence, 2019, , 25-56.	0.9	8
27	Managing the evolution and preservation of the data web. Web Semantics, 2019, 54, 1-3.	2.9	2
28	Evaluation of metadata representations in RDF stores. Semantic Web, 2019, 10, 205-229.	1.9	21
29	PURE: A Privacy Aware Rule-Based Framework over Knowledge Graphs. Lecture Notes in Computer Science, 2019, , 205-214.	1.3	3
30	Ontario: Federated Query Processing Against a Semantic Data Lake. Lecture Notes in Computer Science, 2019, , 379-395.	1.3	23
31	MapSDI: A Scaled-Up Semantic Data Integration Framework for Knowledge Graph Creation. Lecture Notes in Computer Science, 2019, , 58-75.	1.3	8
32	What Are the Parameters that Affect the Construction of a Knowledge Graph?. Lecture Notes in Computer Science, 2019, , 695-713.	1.3	9
33	SerVCS: Serialization Agnostic Ontology Development in Distributed Settings. Communications in Computer and Information Science, 2019, , 213-232.	0.5	1
34	A Knowledge-Driven Pipeline for Transforming Big Data into Actionable Knowledge. Lecture Notes in Computer Science, 2019, , 44-49.	1.3	0
35	Poster Paper Data Integration for Supporting Biomedical Knowledge Graph Creation at Large-Scale. Lecture Notes in Computer Science, 2019, , 91-96.	1.3	0
36	FedSDM: Semantic Data Manager for Federations of RDF Datasets. Lecture Notes in Computer Science, 2019, , 85-90.	1.3	0

#	Article	IF	Citations
37	Interaction Network Analysis Using Semantic Similarity Based on Translation Embeddings. Lecture Notes in Computer Science, 2019, , 249-255.	1.3	О
38	COMET: A Contextualized Molecule-Based Matching Technique. Lecture Notes in Computer Science, 2019, , 175-185.	1.3	1
39	Ranking Knowledge Graphs By Capturing Knowledge about Languages and Labels. , 2019, , .		2
40	Shipping Knowledge Graph Management Capabilities to Data Providers and Consumers. , 2018, , .		0
41	Semantic Enrichment of IoT Stream Data On-demand., 2018,,.		0
42	SAANSET: Semi-Automated Acquisition of Scholarly Metadata Using OpenResearch.org Platform. , 2018, , .		0
43	DESERT: A Continuous SPARQL Query Engine for On-Demand Query Answering. International Journal of Semantic Computing, 2018, 12, 373-397.	0.5	3
44	Why Reinvent the Wheel., 2018,,.		71
45	Classifying Data Heterogeneity within Budget and Spending Open Data. , 2018, , .		2
46	Dynamic Composition of Question Answering Pipelines with FRANKENSTEIN., 2018, , .		3
47	OpenBudgets.eu: A Platform for Semantically Representing and Analyzing Open Fiscal Data. Lecture Notes in Computer Science, 2018, , 433-447.	1.3	1
48	EffTE., 2018,,.		0
49	Seamless integration of cyber-physical systems in knowledge graphs. , 2018, , .		2
50	Towards a Knowledge Graph for Science. , 2018, , .		76
51	HARE., 2018,,.		O
52	Unveiling Scholarly Communities over Knowledge Graphs. Lecture Notes in Computer Science, 2018, , 103-115.	1.3	14
53	Synthesizing Knowledge Graphs from Web Sources with the MINTE\$\$^+\$\$ Framework. Lecture Notes in Computer Science, 2018, , 359-375.	1.3	3
54	Intelligent Clients for Replicated Triple Pattern Fragments. Lecture Notes in Computer Science, 2018, , 400-414.	1.3	3

#	Article	IF	Citations
55	GARUM: A Semantic Similarity Measure Based on Machine Learning and Entity Characteristics. Lecture Notes in Computer Science, 2018, , 169-183.	1.3	3
56	Knowledge Graphs for Semantically Integrating Cyber-Physical Systems. Lecture Notes in Computer Science, 2018, , 184-199.	1.3	11
57	Querying Interlinked Data by Bridging RDF Molecule Templates. Lecture Notes in Computer Science, 2018, , 1-42.	1.3	4
58	Ulysses: An Intelligent Client for Replicated Triple Pattern Fragments. Lecture Notes in Computer Science, 2018, , 182-186.	1.3	0
59	BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets. Lecture Notes in Computer Science, 2018, , 69-84.	1.3	7
60	Decomposing federated queries in presence of replicated fragments. Web Semantics, 2017, 42, 1-18.	2.9	13
61	Semantic Data Integration for Knowledge Graph Construction at Query Time. , 2017, , .		21
62	MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates. Lecture Notes in Computer Science, 2017, , 3-18.	1.3	15
63	SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs. Lecture Notes in Computer Science, 2017, , 206-221.	1.3	2
64	QAestro – Semantic-Based Composition of Question Answering Pipelines. Lecture Notes in Computer Science, 2017, , 19-34.	1.3	4
65	Large-scale storage and query processing for semantic sensor data. , 2017, , .		4
66	Enhancing answer completeness of SPARQL queries via crowdsourcing. Web Semantics, 2017, 45, 41-62.	2.9	19
67	MINTE., 2017,,.		18
68	A big data architecture for managing oceans of data and maritime applications. , 2017, , .		10
69	The industry 4.0 standards landscape from a semantic integration perspective. , 2017, , .		40
70	SMJoin., 2017,,.		6
71	Capturing Knowledge in Semantically-typed Relational Patterns to Enhance Relation Linking. , 2017, , .		15
72	Maritime data technology landscape and value chain exploiting oceans of data for maritime applications. , 2017, , .		6

#	Article	IF	Citations
73	MateTee: A Semantic Similarity Metric Based on Translation Embeddings for Knowledge Graphs. Lecture Notes in Computer Science, 2017, , 246-263.	1.3	4
74	The BigDataEurope Platform $\hat{a}\in$ Supporting the Variety Dimension of Big Data. Lecture Notes in Computer Science, 2017, , 41-59.	1.3	21
75	Towards an Integrated Graph Algebra for Graph Pattern Matching with Gremlin. Lecture Notes in Computer Science, 2017, , 81-91.	1.3	7
76	Integration of Scholarly Communication Metadata Using Knowledge Graphs. Lecture Notes in Computer Science, 2017, , 328-341.	1.3	10
77	Diefficiency Metrics: Measuring the Continuous Efficiency of Query Processing Approaches. Lecture Notes in Computer Science, 2017, , 3-19.	1.3	11
78	Towards a Multi-way Similarity Join Operator. Communications in Computer and Information Science, 2017, , 267-274.	0.5	2
79	Towards Semantification of Big Data Technology. Lecture Notes in Computer Science, 2016, , 376-390.	1.3	13
80	GADES., 2016,,.		13
81	Mobile teleradiology system suitable for m-health services supporting content and semantic based image retrieval on a grid infrastructure., 2016, 2016, 5380-5383.		2
82	On the Selection of SPARQL Endpoints to Efficiently Execute Federated SPARQL Queries. Lecture Notes in Computer Science, 2016, , 109-149.	1.3	18
83	FuhSen: A Federated Hybrid Search Engine forÂBuilding a Knowledge Graph On-Demand (Short Paper). Lecture Notes in Computer Science, 2016, , 752-761.	1.3	6
84	Alligator: A Deductive Approach for the Integration of Industry 4.0 Standards. Lecture Notes in Computer Science, 2016, , 272-287.	1.3	7
85	Considering Semantics on the Discovery of Relations in Knowledge Graphs. Lecture Notes in Computer Science, 2016, , 666-680.	1.3	6
86	Challenges for Semantically Driven Collaborative Spaces. Lecture Notes in Computer Science, 2016, , 3-9.	1.3	0
87	Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development., 2016,,.		3
88	Factorization Techniques for Longitudinal Linked Data (Short Paper). Lecture Notes in Computer Science, 2016, , 690-698.	1.3	0
89	HARE., 2015,,.		6
90	Determining similarity of scientific entities in annotation datasets. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	3

#	Article	IF	CITATIONS
91	WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies., 2015,,.		2
92	Exploiting information content and semantics to accurately compute similarity of GO-based annotated entities. , 2015, , .		2
93	An automatic method for the enrichment of DICOM metadata using biomedical ontologies. , 2015, 2015, 2551-4.		3
94	OnSim: A Similarity Measure for Determining Relatedness Between Ontology Terms. Lecture Notes in Computer Science, 2015, , 70-86.	1.3	3
95	AnnEvol: An Evolutionary Framework to Description Ontology-Based Annotations. Lecture Notes in Computer Science, 2015, , 87-103.	1.3	3
96	SemVisM: semantic visualizer for medical image. , 2015, , .		1
97	Networks of Linked Data Eddies: An Adaptive Web Query Processing Engine for RDF Data. Lecture Notes in Computer Science, 2015, , 111-127.	1.3	30
98	RDF-ization of DICOM Medical Images towards Linked Health Data Cloud. IFMBE Proceedings, 2015, , 757-760.	0.3	4
99	Federated SPARQL Queries Processing with Replicated Fragments. Lecture Notes in Computer Science, 2015, , 36-51.	1.3	18
100	DEFENDER: A DEcomposer for quEries agaiNst feDERations of Endpoints. Lecture Notes in Computer Science, 2015, , 480-484.	1.3	1
101	D-FOPA: A Dynamic Final Object Pruning Algorithm to Efficiently Produce Skyline Points Over Data Streams. Lecture Notes in Computer Science, 2015, , 117-133.	1.3	1
102	Combining Multiple Knowledge Sources: A Case Study of Drug Induced Liver Injury. Lecture Notes in Computer Science, 2015, , 3-12.	1.3	O
103	An authority-flow based ranking approach to discover potential novel associations between Linked Data. Semantic Web, 2014, 5, 23-46.	1.9	4
104	Graphium Chrysalis: Exploiting Graph Database Engines to Analyze RDF Graphs. Lecture Notes in Computer Science, 2014, , 326-331.	1.3	3
105	Drug-Target Interaction Prediction Using Semantic Similarity and Edge Partitioning. Lecture Notes in Computer Science, 2014, , 131-146.	1.3	31
106	Traversing the Linking Open Data Cloud to Create News from Tweets. Lecture Notes in Computer Science, 2014, , 479-488.	1.3	2
107	Exploiting Semantics from Ontologies and Shared Annotations to Partition Linked Data. Lecture Notes in Computer Science, 2014, , 120-127.	1.3	0
108	SemLAV: Querying Deep Web and Linked Open Data with SPARQL. Lecture Notes in Computer Science, 2014, , 332-337.	1.3	0

#	Article	IF	Citations
109	Measuring Relatedness Between Scientific Entities in Annotation Datasets. , 2013, , .		14
110	Analyzing Linked Data Quality with LiQuate. Lecture Notes in Computer Science, 2013, , 629-638.	1.3	10
111	Medical Image Rendering and Description Driven by Semantic Annotations. Lecture Notes in Computer Science, 2013, , 123-149.	1.3	2
112	Mining Electoral Data for Effective Campaigns and E-Participation. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2013, , 59-82.	0.2	0
113	FRAGOLA: Fabulous RAnking of GastrOnomy LocAtions. Lecture Notes in Computer Science, 2013, , 408-413.	1.3	0
114	LiQuate-Estimating the Quality of Links in the Linking Open Data Cloud. Lecture Notes in Computer Science, 2013, , 56-82.	1.3	2
115	FOPA: A Final Object Pruning Algorithm to Efficiently Produce Skyline Points. Lecture Notes in Computer Science, 2013, , 334-348.	1.3	3
116	Efficiently Producing the K Nearest Neighbors in the Skyline on Vertically Partitioned Tables. International Journal of Information Retrieval Research, 2013, 3, 58-77.	0.7	0
117	PAnG., 2012, , .		6
118	A Non-Chronological Backtracking Unfolding Algorithm for Transactional Web Service Composition. Procedia Computer Science, 2012, 10, 888-893.	2.0	1
119	Experiences of sampling-based approaches for estimating QoS parameters in the Web Service composition problem. International Journal of Web and Grid Services, 2012, 8, 1.	0.5	8
120	A Transactional-QoS Driven Approach for Web Service Composition. Lecture Notes in Computer Science, 2012, , 23-42.	1.3	7
121	Finding Cross Genome Patterns in Annotation Graphs. Lecture Notes in Computer Science, 2012, , 21-36.	1.3	14
122	Benchmarking Federated SPARQL Query Engines: Are Existing Testbeds Enough?. Lecture Notes in Computer Science, 2012, , 313-324.	1.3	26
123	Efficiently Producing the K Nearest Neighbors in the Skyline for Multidimensional Datasets. Lecture Notes in Computer Science, 2012, , 673-676.	1.3	1
124	Challenges of Quality-Driven Resource Discovery. Lecture Notes in Computer Science, 2012, , 181-189.	1.3	0
125	Ranking and Clustering Techniques to Support an Efficient E-Democracy. Lecture Notes in Computer Science, 2012, , 298-301.	1.3	0
126	ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. Lecture Notes in Computer Science, 2011, , 18-34.	1.3	112

#	Article	IF	CITATIONS
127	Aggregating Functional and Non-Functional Properties to Identify Service Compositions. Advances in Web Technologies and Engineering Book Series, 2011, , 145-174.	0.4	6
128	To Cache or Not To Cache: The Effects of Warming Cache in Complex SPARQL Queries. Lecture Notes in Computer Science, 2011, , 716-733.	1.3	6
129	A sampling-based approach to identify QoS for web service orchestrations. , 2010, , .		3
130	Efficiently Joining Group Patterns in SPARQL Queries. Lecture Notes in Computer Science, 2010, , 228-242.	1.3	57
131	An Expressive and Efficient Solution to the Service Selection Problem. Lecture Notes in Computer Science, 2010, , 386-401.	1.3	7
132	Efficiently Selecting the Best Web Services. Lecture Notes in Computer Science, 2010, , 120-139.	1.3	3
133	Expressing and Managing Reactivity in the Semantic Web. Lecture Notes in Computer Science, 2010, , 1018-1035.	1.3	0
134	Flexible and efficient querying and ranking on hyperlinked data sources., 2009,,.		11
135	Reaching the Top of the Skyline: An Efficient Indexed Algorithm for Top-k Skyline Queries. Lecture Notes in Computer Science, 2009, , 471-485.	1.3	13
136	Customized and Optimized Service Selection with ProtocolDB. Lecture Notes in Computer Science, 2009, , 112-123.	1.3	6
137	Techniques to Produce Optimal Web Service Compositions. , 2008, , .		14
138	Query evaluation and optimization in the semantic web. Theory and Practice of Logic Programming, 2008, 8, 393-409.	1.5	11
139	BiOnMap., 2008,,.		9
140	Magic Rewritings for Efficiently Processing Reactivity on Web Ontologies. Lecture Notes in Computer Science, 2008, , 1338-1354.	1.3	1
141	A Deductive Approach for Resource Interoperability and Well-Defined Workflows. Lecture Notes in Computer Science, 2008, , 998-1009.	1.3	6
142	Deductive Web Services: An Ontology-Driven Approach for Service Interoperability in Life Science. , 2007, , 1338-1347.		5
143	Ranking target objects of navigational queries. , 2006, , .		9
144	PATH-BASED SYSTEMS TO GUIDE SCIENTISTS IN THE MAZE OF BIOLOGICAL DATA SOURCES. Journal of Bioinformatics and Computational Biology, 2006, 04, 1069-1095.	0.8	35

#	Article	IF	CITATIONS
145	Preferred Skyline: A Hybrid Approach Between SQLf and Skyline. Lecture Notes in Computer Science, 2005, , 375-384.	1.3	5
146	BioNavigation: Selecting Optimum Paths Through Biological Resources to Evaluate Ontological Navigational Queries. Lecture Notes in Computer Science, 2005, , 275-283.	1.3	12
147	Top-k Skyline: A Unified Approach. Lecture Notes in Computer Science, 2005, , 790-799.	1.3	13
148	Challenges in selecting paths for navigational queries. , 2004, , .		7
149	BioFast. SIGMOD Record, 2004, 33, 72-77.	1.2	9
150	Efficient Techniques to Explore and Rank Paths in Life Science Data Sources. Lecture Notes in Computer Science, 2004, , 187-202.	1.3	21
151	Efficient evaluation of queries in a mediator for WebSources. , 2002, , .		34
152	Source selection and ranking in the websemantics architecture using quality of data metadata. Advances in Computers, 2002, , 87-118.	1.6	4
153	Wrapper generation for Web accessible data sources. , 1998, , .		37
154	A meta-wrapper for scaling up to multiple autonomous distributed information sources. , 1998, , .		15
155	Decomposing Federated Queries in Presence of Replicated Fragments. SSRN Electronic Journal, 0, , .	0.4	0
156	Comparing MapReduce and Pipeline Implementations for Counting Triangles. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 237, 20-33.	0.8	0
157	Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. SSRN Electronic Journal, 0, , .	0.4	0
158	Evaluating Top-k Skyline Queries Efficiently. Advances in Data Mining and Database Management Book Series, 0, , 102-117.	0.5	0
159	On the Efficiency of Querying and Storing RDF Documents. Advances in Data Mining and Database Management Book Series, 0, , 354-385.	0.5	0
160	SKG4EOSC - Scholarly Knowledge Graphs for EOSC: Establishing a backbone of knowledge graphs for FAIR Scholarly Information in EOSC. Research Ideas and Outcomes, 0, 8, .	1.0	5