Kem A Sochacki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736451/publications.pdf

Version: 2024-02-01

394421 526287 38 1,688 19 27 citations g-index h-index papers 49 49 49 2472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nature Communications, 2022, 13, 905.	12.8	15
2	The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Developmental Cell, 2021, 56, 1131-1146.e3.	7.0	44
3	The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells. Nature Communications, 2021, 12, 3970.	12.8	12
4	Imaging the structure of the plasma membrane with platinum replica and cryogenic electron microscopy and tomography of unroofed cells Microscopy and Microanalysis, 2021, 27, 1894-1895.	0.4	0
5	Find your coat: Using correlative light and electron microscopy to study intracellular protein coats. Current Opinion in Cell Biology, 2021, 71, 21-28.	5.4	9
6	Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Reports, 2021, 37, 110008.	6.4	20
7	Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Molecular Biology of the Cell, 2020, 31, 2826-2840.	2.1	15
8	Visualizing the Structural Progression of Clathrin Mediated Endocytosis with Fluorescence and Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 794-795.	0.4	0
9	Eden growth models for flat clathrin lattices with vacancies. New Journal of Physics, 2020, 22, 073043.	2.9	11
10	Mapping Protein Dynamics During Exocytosis of Single Microvesicles in Neuroendocrine Cells with Evanescent Field Mcroscopy. Microscopy and Microanalysis, 2019, 25, 1238-1239.	0.4	0
11	Imaging the Nanoscale Structure of Endocytosis with Correlative Super-Resolution Light and Electron Microscopy. Biophysical Journal, 2019, 116, 10a.	0.5	0
12	Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells. Journal of General Physiology, 2019, 151, 1386-1403.	1.9	10
13	From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends in Cell Biology, 2019, 29, 241-256.	7.9	64
14	Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nature Communications, 2018, 9, 419.	12.8	82
15	Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nature Communications, 2018, 9, 1109.	12.8	109
16	Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature, 2018, 560, 258-262.	27.8	79
17	Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. Journal of Cell Biology, 2018, 217, 3301-3311.	5.2	55
18	Modeling the Flat to Curved Transition during Clathrin Mediated Endocytosis. Biophysical Journal, 2018, 114, 280a.	0.5	0

#	Article	IF	Citations
19	Examination of Antigen-Induced Endocytic Structure Formation in BÂLymphocytes. Biophysical Journal, 2017, 112, 394a-395a.	0.5	0
20	Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nature Cell Biology, 2017, 19, 352-361.	10.3	176
21	Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nature Protocols, 2017, 12, 916-946.	12.0	66
22	Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells. Methods in Molecular Biology, 2017, 1663, 219-230.	0.9	29
23	Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Molecular Biology of the Cell, 2016, 27, 2423-2434.	2.1	43
24	Imaging the Dynamic Release and Capture of Vesicle Membrane Proteins in Mammalian Cells. Microscopy and Microanalysis, 2015, 21, 67-68.	0.4	0
25	Correlative iPALM and Platinum Replica Electron Tomography to Highlight Single Molecules on Clathrin Endocytic Structures in 3D. Microscopy and Microanalysis, 2015, 21, 1497-1498.	0.4	0
26	Correlative iPALM and Platinum Replica Electron Tomography Pinpoints Endocytic Proteins on the Mammalian Cell Cortex in 3D. Biophysical Journal, 2015, 108, 360a.	0.5	0
27	Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomedical Optics Express, 2014, 5, 1190.	2.9	83
28	Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nature Methods, 2014, 11, 305-308.	19.0	123
29	Systematic spatial mapping of proteins at exocytic and endocytic structures. Molecular Biology of the Cell, 2014, 25, 2084-2093.	2.1	27
30	Imaging the post-fusion release and capture of a vesicle membrane protein. Nature Communications, 2012, 3, 1154.	12.8	47
31	Protein Diffusion in the Periplasm of E. coli under Osmotic Stress. Biophysical Journal, 2011, 100, 22-31.	0.5	90
32	Real-time attack on single <i>Escherichia coli</i> cells by the human antimicrobial peptide LL-37. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E77-81.	7.1	233
33	Cytoplasmic Protein Mobility in Osmotically Stressed <i>Escherichia coli</i> . Journal of Bacteriology, 2009, 191, 231-237.	2.2	99
34	Protein Diffusion in the E. coli Cytoplasm and Periplasm under Osmotic Stress. Biophysical Journal, 2009, 96, 30a-31a.	0.5	0
35	Temperature-dependent sensitivity enhancement of solid-state NMR spectra of \hat{l} ±-synuclein fibrils. Journal of Biomolecular NMR, 2007, 39, 197-211.	2.8	52
36	Preparation of \hat{l}_{\pm} -synuclein fibrils for solid-state NMR: Expression, purification, and incubation of wild-type and mutant forms. Protein Expression and Purification, 2006, 48, 112-117.	1.3	49

3

#	Article	lF	CITATIONS
37	Band-selective 13C Homonuclear 3D Spectroscopy for Solid Proteins at High Field with Rotor-synchronized Soft Pulses. Journal of Biomolecular NMR, 2006, 34, 245-257.	2.8	24
38	Sterols Lower Energetic Barriers of Membrane Bending and Fission Necessary for Efficient Clathrin Mediated Endocytosis. SSRN Electronic Journal, 0, , .	0.4	1