Uwe Schlattner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade. Current Biology, 2003, 13, 2004-2008.	3.9	1,456

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 $_{9.1}^{17}$ 50 702 $_{1,430}^{17}$ (edition

3	The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 2011, 40, 1271-1296.	2.7	543
4	Mitochondrial creatine kinase in human health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 164-180.	3.8	501
5	Yeast Two-Hybrid, a Powerful Tool for Systems Biology. International Journal of Molecular Sciences, 2009, 10, 2763-2788.	4.1	436
6	Activation of the AMP-activated Protein Kinase by the Anti-diabetic Drug Metformin in Vivo. Journal of Biological Chemistry, 2004, 279, 43940-43951.	3.4	423
7	Dissecting the Role of 5′-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2006, 281, 32207-32216.	3.4	393
8	Insulin Antagonizes Ischemia-induced Thr172 Phosphorylation of AMP-activated Protein Kinase α-Subunits in Heart via Hierarchical Phosphorylation of Ser485/491. Journal of Biological Chemistry, 2006, 281, 5335-5340.	3.4	308
9	Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 2008, 76, 329-343.	3.0	303
10	New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 2006, 41, 389-405.	1.9	298
11	Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. Journal of Physiology, 2006, 571, 253-273.	2.9	212
12	Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. BioFactors, 1998, 8, 229-234.	5.4	206
13	Identification of Phosphorylation Sites in AMP-activated Protein Kinase (AMPK) for Upstream AMPK Kinases and Study of Their Roles by Site-directed Mutagenesis. Journal of Biological Chemistry, 2003, 278, 28434-28442.	3.4	204
14	Inhibition of the Mitochondrial Permeability Transition by Creatine Kinase Substrates. Journal of Biological Chemistry, 2003, 278, 17760-17766.	3.4	192
15	The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Molecular and Cellular Biochemistry, 2009, 329, 51-62.	3.1	167
16	Activation of Protein Kinase Cζ by Peroxynitrite Regulates LKB1-dependent AMP-activated Protein Kinase in Cultured Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 6366-6375.	3.4	161
17	NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death and Differentiation, 2016, 23, 1140-1151.	11.2	147
18	AMP-activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2. Journal of Biological Chemistry, 2006, 281, 26159-26169.	3.4	139

#	Article	IF	CITATIONS
19	Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 17608-17616.	3.4	136
20	Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 2014, 344, 1510-1515.	12.6	130
21	Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli. Protein Expression and Purification, 2003, 30, 230-237.	1.3	126
22	Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H37-H47.	3.2	122
23	AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nature Structural and Molecular Biology, 2012, 19, 716-718.	8.2	112
24	Octamers of Mitochondrial Creatine Kinase Isoenzymes Differ in Stability and Membrane Binding. Journal of Biological Chemistry, 2000, 275, 17314-17320.	3.4	98
25	Cardiolipin Clusters and Membrane Domain Formation Induced by Mitochondrial Proteins. Journal of Molecular Biology, 2007, 365, 968-980.	4.2	98
26	Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovascular Research, 2012, 95, 290-299.	3.8	95
27	Mitochondrial Creatine Kinase and Mitochondrial Outer Membrane Porin Show a Direct Interaction That Is Modulated by Calcium. Journal of Biological Chemistry, 2001, 276, 48027-48030.	3.4	92
28	Dual Function of Mitochondrial Nm23-H4 Protein in Phosphotransfer and Intermembrane Lipid Transfer. Journal of Biological Chemistry, 2013, 288, 111-121.	3.4	92
29	Title is missing!. Molecular and Cellular Biochemistry, 1998, 184, 125-140.	3.1	91
30	Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H ₂ O ₂ emission during impaired oxidative phosphorylation. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 643-661.	7.3	86
31	The Nucleoside Diphosphate Kinase D (NM23-H4) Binds the Inner Mitochondrial Membrane with High Affinity to Cardiolipin and Couples Nucleotide Transfer with Respiration. Journal of Biological Chemistry, 2008, 283, 26198-26207.	3.4	84
32	Conserved regulatory elements in AMPK. Nature, 2013, 498, E8-E10.	27.8	84
33	The Creatine Kinase/Creatine Connection to Alzheimer's Disease: CK Inactivation, APP-CK Complexes and Focal Creatine Deposits. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-11.	3.0	83
34	Crystal structure of brainâ€ŧype creatine kinase at 1.41 à resolution. Protein Science, 1999, 8, 2258-2269.	7.6	83
35	Structural Properties of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2008, 283, 18331-18343.	3.4	82
36	Mitochondrial kinases and their molecular interaction with cardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2032-2047.	2.6	82

#	Article	IF	CITATIONS
37	Ecdysteroid Receptors and their Applications in Agriculture and Medicine. Vitamins and Hormones, 2005, 73, 59-100.	1.7	80
38	Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1545-1554.	2.6	80
39	The Creatine Kinase System in Human Skin: Protective Effects of Creatine Against Oxidative and UV Damage In Vitro and In Vivo. Journal of Investigative Dermatology, 2005, 124, 443-452.	0.7	78
40	Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus - Biologies, 2006, 329, 657-668.	0.2	78
41	Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion inAsitu, roles of tubulin, and mitochondrial creatine kinase. Molecular and Cellular Biochemistry, 2008, 318, 147-165.	3.1	77
42	Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids, 2016, 48, 1751-1774.	2.7	76
43	Crystal structure of human ubiquitous mitochondrial creatine kinase. , 2000, 39, 216-225.		73
44	The NDPK/NME superfamily: state of the art. Laboratory Investigation, 2018, 98, 164-174.	3.7	73
45	Novel Lipid Transfer Property of Two Mitochondrial Proteins that Bridge the Inner and Outer Membranes. Biophysical Journal, 2007, 92, 126-137.	0.5	71
46	Creatine Kinase and Creatine Transporter in Normal, Wounded, and Diseased Skin. Journal of Investigative Dermatology, 2002, 118, 416-423.	0.7	67
47	Creatine transporters: A reappraisal. Molecular and Cellular Biochemistry, 2004, 256, 407-424.	3.1	65
48	Multiple Interference of Anthracyclines with Mitochondrial Creatine Kinases: Preferential Damage of the Cardiac Isoenzyme and Its Implications for Drug Cardiotoxicity. Molecular Pharmacology, 2002, 61, 516-523.	2.3	64
49	C-terminal Lysines Determine Phospholipid Interaction of Sarcomeric Mitochondrial Creatine Kinase. Journal of Biological Chemistry, 2004, 279, 24334-24342.	3.4	63
50	Creatine kinase: An enzyme with a central role in cellular energy metabolism. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1998, 6, 116-119.	2.0	62
51	Differential Effects of Peroxynitrite on Human Mitochondrial Creatine Kinase Isoenzymes. Journal of Biological Chemistry, 2003, 278, 1125-1130.	3.4	61
52	Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. Journal of Physiology, 2006, 577, 769-777.	2.9	61
53	Mitochondrial cardiolipin/phospholipid trafficking: The role of membrane contact site complexes and lipid transfer proteins. Chemistry and Physics of Lipids, 2014, 179, 32-41.	3.2	61
54	Phosphocreatine Interacts with Phospholipids, Affects Membrane Properties and Exerts Membrane-Protective Effects. PLoS ONE, 2012, 7, e43178.	2.5	61

#	Article	IF	CITATIONS
55	Octamer-dimer Transitions of Mitochondrial Creatine Kinase in Heart Disease. Journal of Molecular and Cellular Cardiology, 1999, 31, 857-866.	1.9	57
56	The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches. , 2007, 46, 27-65.		57
57	Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Clutathionylation and Activation In Vitro. PLoS ONE, 2013, 8, e62497.	2.5	56
58	Creatine Supplementation Improves Dopaminergic Cell Survival and Protects against MPP+ Toxicity in an Organotypic Tissue Culture System. Cell Transplantation, 2005, 14, 537-550.	2.5	53
59	Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 643-652.	1.0	53
60	Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism. Nature Communications, 2019, 10, 1038.	12.8	47
61	Title is missing!. Molecular and Cellular Biochemistry, 1998, 184, 141-151.	3.1	44
62	Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS Journal, 2008, 275, 3236-3247.	4.7	44
63	Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiologica, 2015, 213, 84-106.	3.8	43
64	Modelling <i>in vivo</i> creatine/phosphocreatine <i>in vitro</i> reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. Journal of Physiology, 2016, 594, 3127-3140.	2.9	42
65	Functional Expression of Phosphagen Kinase Systems Confers Resistance to Transient Stresses in Saccharomyces cerevisiae by Buffering the ATP Pool. Journal of Biological Chemistry, 2002, 277, 31303-31309.	3.4	40
66	Interaction of NDPK-D with cardiolipin-containing membranes: Structural basis and implications for mitochondrial physiology. Biochimie, 2009, 91, 779-783.	2.6	38
67	Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metabolic Engineering, 2004, 6, 220-228.	7.0	37
68	Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1075-R1088.	1.8	36
69	The advantage of channeling nucleotides for very processive functions. F1000Research, 2017, 6, 724.	1.6	36
70	Reduced creatine-stimulated respiration in doxorubicin challenged mitochondria: Particular sensitivity of the heart. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1276-1284.	1.0	34
71	A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance. Journal of Bioenergetics and Biomembranes, 2000, 32, 123-131.	2.3	32
72	New Candidate Targets of AMP-Activated Protein Kinase in Murine Brain Revealed by a Novel Multidimensional Substrate-Screen for Protein Kinases. Journal of Proteome Research, 2007, 6, 3266-3277.	3.7	31

#	Article	IF	CITATIONS
73	Impairments in left ventricular mitochondrial bioenergetics precede overt cardiac dysfunction and remodelling in Duchenne muscular dystrophy. Journal of Physiology, 2020, 598, 1377-1392.	2.9	30
74	NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Laboratory Investigation, 2018, 98, 228-232.	3.7	29
75	A Conserved Negatively Charged Cluster in the Active Site of Creatine Kinase Is Critical for Enzymatic Activity. Journal of Biological Chemistry, 2000, 275, 27094-27099.	3.4	29
76	Probing the rotor subunit interface of the ATP synthase from <i>llyobacter tartaricus</i> . FEBS Journal, 2008, 275, 4850-4862.	4.7	28
77	Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli. Biotechnology Letters, 2003, 25, 1013-1017.	2.2	27
78	Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. Journal of Neuroscience Research, 2007, 85, 1863-1875.	2.9	27
79	Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. Journal of Bioenergetics and Biomembranes, 2016, 48, 531-548.	2.3	27
80	Citrulline stimulates muscle protein synthesis, by reallocating ATP consumption to muscle protein synthesis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 919-928.	7.3	27
81	The advantage of channeling nucleotides for very processive functions. F1000Research, 2017, 6, 724.	1.6	27
82	Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation. Biochemical Journal, 2002, 367, 369-380.	3.7	26
83	Non-genomic ecdysone effects and the invertebrate nuclear steroid hormone receptor EcR—new role for an "old―receptor?. Molecular and Cellular Endocrinology, 2006, 247, 64-72.	3.2	26
84	Homo-oligomerization and Activation of AMP-activated Protein Kinase Are Mediated by the Kinase Domain αG-Helix. Journal of Biological Chemistry, 2009, 284, 27425-27437.	3.4	25
85	Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology. Molecular and Cellular Biochemistry, 2007, 306, 153-162.	3.1	23
86	Mitochondrial Proteolipid Complexes of Creatine Kinase. Sub-Cellular Biochemistry, 2018, 87, 365-408.	2.4	23
87	Hodgkin diseaseâ€derived cell lines expressing ubiquitous mitochondrial creatine kinase show growth inhibition by cyclocreatine treatment independent of apoptosis. International Journal of Cancer, 2001, 94, 513-519.	5.1	22
88	A versatile multidimensional protein purification system with full Internet remote control based on a standard HPLC system. BioTechniques, 2009, 46, ix-xii.	1.8	22
89	Cardiac phosphoproteome reveals cell signaling events involved in doxorubicin cardiotoxicity. Journal of Proteomics, 2012, 75, 4705-4716.	2.4	22
90	Expression analysis of ATAD3 isoforms in rodent and human cell lines and tissues. Gene, 2014, 535, 60-69.	2.2	22

#	Article	IF	CITATIONS
91	Ornithine Transcarbamylase – From Structure to Metabolism: An Update. Frontiers in Physiology, 2021, 12, 748249.	2.8	21
92	The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biology, 2021, 19, 228.	3.8	21
93	Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Molecular and Cellular Neurosciences, 2006, 31, 263-272.	2.2	19
94	The mitochondrial nucleoside diphosphate kinase (NDPK-D/NME4), a moonlighting protein for cell homeostasis. Laboratory Investigation, 2018, 98, 582-588.	3.7	19
95	A two-dimensional screen for AMPK substrates identifies tumor suppressor fumarate hydratase as a preferential AMPKα2 substrate. Journal of Proteomics, 2012, 75, 3304-3313.	2.4	18
96	Ligand control of interaction in vivo between ecdysteroid receptor and ultraspiracle ligand-binding domain. Biochemical Journal, 2004, 378, 779-784.	3.7	17
97	Creatine promotes the GABAergic phenotype in human fetal spinal cord cultures. Brain Research, 2007, 1137, 50-57.	2.2	17
98	Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems. ACS Synthetic Biology, 2018, 7, 218-226.	3.8	17
99	Isoenzyme-directed selection and characterization of anti-creatine kinase single chain Fv antibodies from a human phage display library. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1579, 124-132.	2.4	16
100	Development and performance of an enzyme immunoassay to detect creatine kinase isoenzyme MB activity using anti-mitochondrial creatine kinase monoclonal antibodies. Scandinavian Journal of Clinical and Laboratory Investigation, 2009, 69, 687-695.	1.2	16
101	Regulation of brain-type creatine kinase by AMP-activated protein kinase: Interaction, phosphorylation and ER localization. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1271-1283.	1.0	16
102	Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 271-278.	3.0	16
103	A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E213-E224.	3.5	16
104	Metabolite Channeling: Creatine Kinase Microcompartments. , 2004, , 646-651.		16
105	Oxidative phosphorylation and its coupling to mitochondrial creatine and adenylate kinases in human gastric mucosa. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R936-R946.	1.8	15
106	Effects of creatine supplementation in cystic fibrosis: results of a pilot study. Journal of Cystic Fibrosis, 2003, 2, 177-182.	0.7	14
107	Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E944-E946.	3.5	14
108	Characterization and Production of Protein Complexes by Co-expression in Escherichia coli. Methods in Molecular Biology, 2015, 1261, 63-89.	0.9	14

#	Article	IF	CITATIONS
109	Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Biochemical Journal, 2002, 363, 785-792.	3.7	13
110	Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression. Basic Research in Cardiology, 2009, 104, 247-257.	5.9	13
111	Vacuolar morphology and cell cycle distribution are modified by leucine limitation in auxotrophic Saccharomyces cerevisiae. Biology of the Cell, 2000, 92, 629-637.	2.0	12
112	Bypassing AMPK Phosphorylation. Chemistry and Biology, 2014, 21, 567-569.	6.0	12
113	Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin. Journal of Biological Chemistry, 2018, 293, 15933-15946.	3.4	12
114	LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. Science Advances, 2019, 5, eaau5106.	10.3	12
115	NME6 is a phosphotransfer-inactive, monomeric NME/NDPK family member and functions in complexes at the interface of mitochondrial inner membrane and matrix. Cell and Bioscience, 2021, 11, 195.	4.8	12
116	Creatine and neurotrophin-4/5 promote survival of nitric oxide synthase-expressing interneurons in striatal cultures. Neuroscience Letters, 2006, 395, 57-62.	2.1	11
117	Adenylate Kinase in Tobacco Cell Cultures. II. Variability and Regulation of Isoform Activity Patterns in Different Cell Lines. Journal of Plant Physiology, 1994, 144, 400-409.	3.5	10
118	Inhibition of BET Proteins Reduces Right Ventricle Hypertrophy and Pulmonary Hypertension Resulting from Combined Hypoxia and Pulmonary Inflammation. International Journal of Molecular Sciences, 2018, 19, 2224.	4.1	10
119	Macroenzyme Creatine Kinase (Ck) Type 2 in HIV-Infected Patients is Significantly Associated with Tdf and Consists of Ubiquitous Mitochondrial Ck. Antiviral Therapy, 2006, 11, 1071-1080.	1.0	10
120	Chloroplast adenylate kinase from tobacco. Purification and partial characterization. Phytochemistry, 1996, 42, 589-594.	2.9	9
121	Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Biochemical Journal, 2002, 363, 785.	3.7	9
122	Monocarboxylate transporters and mitochondrial creatine kinase protein content in McArdle disease. Molecular Genetics and Metabolism, 2013, 108, 259-262.	1.1	9
123	Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism. Exs, 2016, 107, 491-523.	1.4	9
124	Creatine kinases: a cornerstone for structural research in the phosphagen kinase family. FASEB Journal, 2010, 24, 7-7.	0.5	8
125	Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. Springer Series in Biophysics, 2014, , 261-320.	0.4	8
126	Expressing creatine kinase in transgenic tobacco – a first step towards introducing an energy buffering system in plants. Transgenic Research, 2002, 11, 49-59.	2.4	7

#	Article	IF	CITATIONS
127	Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase α1α2-Knockout Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 731015.	3.7	7
128	Signaling by AMP-activated Protein Kinase. , 0, , 303-338.		6
129	Restrictions in ATP diffusion within sarcomeres can provoke ATP-depleted zones impairing exercise capacity in chronic obstructive pulmonary disease. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2269-2278.	2.4	6
130	Yeast-based production and purification of HIS-tagged human ATAD3A, A specific target of S100B. Protein Expression and Purification, 2012, 83, 211-216.	1.3	5
131	The effects of creatine supplementation on striatal neural progenitor cells depend on developmental stage. Amino Acids, 2016, 48, 1913-1927.	2.7	5
132	The Complex Functions of the NME Family—A Matter of Location and Molecular Activity. International Journal of Molecular Sciences, 2021, 22, 13083.	4.1	5
133	An automated home-built low-cost fermenter suitable for large-scale bacterial expression of proteins in <i>Escherichia coli</i> . BioTechniques, 2008, 45, 187-189.	1.8	4
134	AMPfret: synthetic nanosensor for cellular energy states. Biochemical Society Transactions, 2020, 48, 103-111.	3.4	4
135	Where Have the Fluxes Gone?. Journal of Biological Chemistry, 2010, 285, le21.	3.4	3
136	Macro Ck2 Accumulation in Tenofovir-Treated HIV Patients is Facilitated by Ck Oligomer Stabilization but is Not Predictive for Pathology. Antiviral Therapy, 2013, 18, 193-204.	1.0	3
137	Externalization of Cardiolipin as an "Eat-Me―Mitophageal Signal is Facilitated by NDPK-D. Biophysical Journal, 2014, 106, 184a.	0.5	3
138	Creatine kinase in human erythrocytes: A genetic anomaly reveals presence of soluble brain-type isoform. Blood Cells, Molecules, and Diseases, 2017, 64, 33-37.	1.4	3
139	Changes in distribution of chloroplast adenylate kinase isoforms during floral induction. Physiologia Plantarum, 1996, 96, 319-323.	5.2	2
140	Muscle hypertrophy in hypoxia with inflammation is controlled by bromodomain and extra-terminal domain proteins. Scientific Reports, 2017, 7, 12133.	3.3	2
141	AMP-Activated Protein Kinase: A Metabolic Stress Sensor in the Heart. , 2015, , 187-225.		2
142	Supplementing Soy-Based Diet with Creatine in Rats: Implications for Cardiac Cell Signaling and Response to Doxorubicin. Nutrients, 2022, 14, 583.	4.1	2
143	Creatine kinase: An enzyme with a central role in cellular energy metabolism. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1998, 6, 116-119.	2.0	1
144	Calcium and energy transfer. Journal of Physiology, 2005, 565, 703-703.	2.9	1

#	Article	IF	CITATIONS
145	Functional aspects of the X-ray structure of mitochondrial creatine kinase: A molecular physiology approach. , 1998, , 125-140.		1
146	Disruption of electron transport between complexes II and III is anti-arrhythmic during reperfusion via reduced oxidative stress. Journal of Molecular and Cellular Cardiology, 2008, 44, 757.	1.9	0
147	A Microcompartment Of Mitochondrial Nucleoside Diphosphate Kinase: Cardiolipin Interaction And Coupling Of Nucleotide Transfer With Respiration. Biophysical Journal, 2009, 96, 7a-8a.	0.5	Ο
148	Membrane interaction of mitochondrial kinases: Mechanistic insights by analysis of thermodynamic and catalytic parameters. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 73.	1.0	0
149	Mitochondrial Nm23-H4 can switch between phosphotransfer and lipid transfer activities. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S87-S88.	1.0	Ο
150	Intermembrane Lipid Transfer is Facilitated by Mitochondrial Nucleoside Diphosphate Kinase D. Biophysical Journal, 2012, 102, 494a-495a.	0.5	0
151	Tumor suppressor fumarate hydratase is phosphorylated and regulated by AMP-activated protein kinase. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S85-S86.	1.0	Ο
152	A Surface Plasmon Resonance-Based Two-Dimensional Screen for Protein Kinase Substrates Identifies Fumarase as AMPK Target. Biophysical Journal, 2012, 102, 573a.	0.5	0
153	Mitochondrial Nm23-H4/NDPK-D is Multifunctional: Intermembrane Cardiolipin Transfer Linked to Apoptosis. Biophysical Journal, 2013, 104, 216a.	0.5	Ο
154	Application of FRET Biosensors in Energy Metabolism. Biophysical Journal, 2013, 104, 304a.	0.5	0
155	A Genetically-Encoded FRET Sensor based on AMP-Activated Protein Kinase Reports Allosteric Kinase Activation. Biophysical Journal, 2015, 108, 612a.	0.5	Ο
156	Mitochondrial NM23-H4/NDPk-D is Multifunctional: Fueling Mitochondrial GTPase OPA1 and Triggering Mitophagy. Biophysical Journal, 2015, 108, 369a.	0.5	0
157	Mitochondrial NM23-H4/NDPK-D Supports Cardiolipin Signaling to Eliminate Depolarized Mitochondria by Mitophagy. Biophysical Journal, 2016, 110, 472a.	0.5	0
158	Mitochondrial quality control and dynamics: NM23-H4 supports cardiolipin-linked mitophagy signaling and GTP-fueling to OPA1. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e26.	1.0	0
159	Mitochondrial NM23-H4/NDPK-D and OPA1: Partners in Shaping Mitochondria and Initiating Mitophagy?. Biophysical Journal, 2017, 112, 324a-325a.	0.5	Ο
160	A New Synthetic FRET Sensor to Analyze Allosteric AMPK Activation and Cellular Energy State. Biophysical Journal, 2019, 116, 155a.	0.5	0
161	Membrane Interaction of Mitochondrial Intermembrane Space Kinases. Biophysical Journal, 2020, 118, 447a-448a.	0.5	0
162	NME4 Loss-of-Function Alters Mitochondria, Triggers Retrograde Signaling and Leads to Cellular Reprogramming. Biophysical Journal, 2021, 120, 348a.	0.5	0

#	Article	IF	CITATIONS
163	Regulation Metabolite Channeling in Energy Metabolism. , 2021, , 592-598.		0
164	Monocarboxylate Transporters and Creatine Kinase Protein Content in McArdle's Disease. FASEB Journal, 2013, 27, 1202.14.	0.5	0