Matthew Farrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21
2	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
3	The effect of rapid exome sequencing on downstream health care utilization for infants with suspected genetic disorders in an intensive care unit. Genetics in Medicine, 2022, 24, 1675-1683.	2.4	3
4	Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease. Neurology, 2022, 99, .	1.1	25
5	The Interaction between <scp><i>HLAâ€DRB1</i></scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	3.9	4
6	Autonomic dysfunction in Parkinson's disease: Results from the Faroese Parkinson's disease cohort. Neuroscience Letters, 2022, 785, 136789.	2.1	3
7	<i>SETD1B</i> -associated neurodevelopmental disorder. Journal of Medical Genetics, 2021, 58, 196-204.	3.2	22
8	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	3.1	16
9	Chronic and Acute Manipulation of Cortical Glutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 569031.	3.7	5
10	Hunting for Familial Parkinson's Disease Mutations in the Post Genome Era. Genes, 2021, 12, 430.	2.4	4
11	Dynamic control of the dopamine transporter in neurotransmission and homeostasis. Npj Parkinson's Disease, 2021, 7, 22.	5.3	58
12	Reply: UQCRC1 variants in Parkinson's disease: a large cohort study in Chinese mainland population. Brain, 2021, 144, e55-e55.	7.6	0
13	Editorial: Celebrating the Diversity of Genetic Research to Dissect the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2021, 12, 648417.	2.4	5
14	Genomewide Association Studies of <scp> <i>LRRK2 </i> </scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
15	LRRK2; a dynamic regulator of cellular trafficking. Brain Research, 2021, 1761, 147394.	2.2	3
16	The Gut–Brain Axis and Its Relation to Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2021, 13, 782082.	3.4	59
17	Neuropathological findings in PINK1-associated Parkinson's disease. Parkinsonism and Related Disorders, 2020, 78, 105-108.	2.2	14
18	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	3.9	57

#	Article	IF	CITATIONS
19	Mitochondrial <i>UQCRC1</i> mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain, 2020, 143, 3352-3373.	7.6	37
20	Age at Onset of <scp>LRRK2</scp> p. <scp>Gly2019Ser</scp> Is Related to Environmental and Lifestyle Factors. Movement Disorders, 2020, 35, 1854-1858.	3.9	28
21	Parkinson disease risk variants in East Asian populations. Nature Reviews Neurology, 2020, 16, 461-462.	10.1	3
22	Neuron-autonomous susceptibility to induced synuclein aggregation is exacerbated by endogenous Lrrk2 mutations and ameliorated by Lrrk2 genetic knock-out. Brain Communications, 2020, 2, fcz052.	3.3	19
23	Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain, 2020, 143, 1190-1205.	7.6	72
24	Disease modification and biomarker development in Parkinson disease. Neurology, 2020, 94, 481-494.	1.1	103
25	Assessing an Interactive Online Tool to Support Parents' Genomic Testing Decisions. Journal of Genetic Counseling, 2019, 28, 10-17.	1.6	26
26	Whole-Exome Sequencing of an Exceptional Longevity Cohort. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1386-1390.	3.6	14
27	Family with primary periodic paralysis and a mutation in <i>MCM3AP</i> , a gene implicated in mRNA transport. Muscle and Nerve, 2019, 60, 311-314.	2.2	3
28	Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy. Frontiers in Neurology, 2019, 10, 434.	2.4	70
29	Pathophysiology of and therapeutic options for a GABRA1 variant linked to epileptic encephalopathy. Molecular Brain, 2019, 12, 92.	2.6	16
30	RAPIDOMICS: rapid genome-wide sequencing in a neonatal intensive care unit—successes and challenges. European Journal of Pediatrics, 2019, 178, 1207-1218.	2.7	59
31	Mitochondrial DNA Deletions Discriminate Affected from Unaffected <i>LRRK2</i> Mutation Carriers. Annals of Neurology, 2019, 86, 324-326.	5.3	17
32	DNAJC13 p.Asn855Ser, implicated in familial parkinsonism, alters membrane dynamics of sorting nexin 1. Neuroscience Letters, 2019, 706, 114-122.	2.1	8
33	Doubts about TMEM230 as a gene for parkinsonism. Nature Genetics, 2019, 51, 367-368.	21.4	11
34	Endosomal trafficking leads the way in Parkinson's disease. Movement Disorders, 2019, 34, 443-445.	3.9	3
35	Single Inflammatory Trigger Leads to Neuroinflammation in LRRK2 Rodent Model without Degeneration of Dopaminergic Neurons. Journal of Parkinson's Disease, 2019, 9, 121-139.	2.8	17
36	Pipeline to gene discovery - Analysing familial Parkinsonism in the Queensland Parkinson's Project. Parkinsonism and Related Disorders, 2018, 49, 34-41.	2.2	17

#	Article	IF	CITATIONS
37	The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Movement Disorders, 2018, 33, 196-207.	3.9	55
38	Establishing diagnostic criteria for Perry syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 482-487.	1.9	40
39	Dopamine receptors and BDNF -haplotypes predict dyskinesia in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 47, 39-44.	2.2	33
40	A Meta-Analysis of α-Synuclein Multiplication in Familial Parkinsonism. Frontiers in Neurology, 2018, 9, 1021.	2.4	82
41	A Case of Parkinson's Disease with No Lewy Body Pathology due to a Homozygous Exon Deletion in <i>Parkin</i> . Case Reports in Neurological Medicine, 2018, 2018, 1-4.	0.4	33
42	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	9.1	87
43	Altered dopamine release and monoamine transporters in Vps35 p.D620N knock-in mice. Npj Parkinson's Disease, 2018, 4, 27.	5.3	51
44	PSEN1 p.Met233Val in a Complex Neurodegenerative Movement and Neuropsychiatric Disorder. Journal of Movement Disorders, 2018, 11, 45-48.	1.3	12
45	Gender differences in Parkinson's disease depression. Parkinsonism and Related Disorders, 2017, 36, 93-97.	2.2	34
46	Genetic Identification in Early Onset Parkinsonism among Norwegian Patients. Movement Disorders Clinical Practice, 2017, 4, 499-508.	1.5	25
47	SCA2 family presenting as typical Parkinson's disease: 34 year follow up. Parkinsonism and Related Disorders, 2017, 40, 69-72.	2.2	16
48	An Infant With Epilepsy and Recurrent Hemiplegia due to Compound Heterozygous Variants in ATP1A2. Pediatric Neurology, 2017, 75, 87-90.	2.1	21
49	Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e33-e33.	7.6	2
50	Neurobehavioral characterization of adult-onset Alexander disease. Neurology: Clinical Practice, 2017, 7, 425-429.	1.6	4
51	Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies. Lancet Neurology, The, 2017, 16, 351-359.	10.2	96
52	<i>DNAJC12</i> and dopaâ€responsive nonprogressive parkinsonism. Annals of Neurology, 2017, 82, 640-646.	5.3	60
53	De Novo Mutations in YWHAG Cause Early-Onset Epilepsy. American Journal of Human Genetics, 2017, 101, 300-310.	6.2	65
54	Homozygous alpha-synuclein p.A53V in familial Parkinson's disease. Neurobiology of Aging, 2017, 57, 248.e7-248.e12.	3.1	83

#	Article	IF	CITATIONS
55	Loss-of-Function and Gain-of-Function Mutations in KCNQ5 Cause Intellectual Disability or Epileptic Encephalopathy. American Journal of Human Genetics, 2017, 101, 65-74.	6.2	99
56	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain, 2017, 140, 98-117.	7.6	116
57	Evaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study. Neurobiology of Aging, 2017, 49, 217.e1-217.e4.	3.1	7
58	Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice. ELife, 2017, 6, .	6.0	74
59	αâ€synuclein genetic variability: A biomarker for dementia in Parkinson disease. Annals of Neurology, 2016, 79, 991-999.	5.3	85
60	A scan without evidence is not evidence of absence: Scans without evidence of dopaminergic deficit in a symptomatic leucine-rich repeat kinase 2 mutation carrier. Movement Disorders, 2016, 31, 405-409.	3.9	14
61	Double homozygous mutations (R275W and M432V) in the ParkinGene associated with late-onset Parkinson's disease. Movement Disorders, 2016, 31, 423-425.	3.9	3
62	Conjugal parkinsonism is coincidental. Parkinsonism and Related Disorders, 2016, 33, 149-150.	2.2	2
63	Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia. BMC Neuroscience, 2016, 17, 77.	1.9	48
64	DCTN1 p.K56R in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2016, 28, 56-61.	2.2	27
65	DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser parkinsonism: a genome-wide linkage and association study. Lancet Neurology, The, 2016, 15, 1248-1256.	10.2	69
66	Conjugal parkinsonism – Clinical, pathology and genetic study. No evidence of person-to-person transmission. Parkinsonism and Related Disorders, 2016, 31, 87-90.	2.2	17
67	De novo <i>FGF12</i> mutation in 2 patients with neonatal-onset epilepsy. Neurology: Genetics, 2016, 2, e120.	1.9	29
68	Leucine-rich repeat kinase 2 is a regulator of B cell function, affecting homeostasis, BCR signaling, IgA production, and TI antigen responses. Journal of Neuroimmunology, 2016, 292, 1-8.	2.3	16
69	Lovastatin protects neurite degeneration in <i>LRRK2-G2019S</i> parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity. Human Molecular Genetics, 2016, 25, 1965-1978.	2.9	45
70	Genetic variability of the retromer cargo recognition complex in parkinsonism. Movement Disorders, 2015, 30, 580-584.	3.9	23
71	Familial aggregation of Parkinson's disease in the Faroe Islands. Movement Disorders, 2015, 30, 538-544.	3.9	15
72	DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. European Journal of Neurology, 2015, 22, 1323-1325.	3.3	21

#	Article	IF	CITATIONS
73	Motor phenotype of LRRK2â€associated Parkinson's disease: A tunisian longitudinal study. Movement Disorders, 2015, 30, 253-258.	3.9	38
74	<i>DNAJC13</i> genetic variants in parkinsonism. Movement Disorders, 2015, 30, 273-278.	3.9	42
75	Novel LRRK2 mutations in Parkinsonism. Parkinsonism and Related Disorders, 2015, 21, 1119-1121.	2.2	8
76	Defining neurodegeneration on <scp>G</scp> uam by targeted genomic sequencing. Annals of Neurology, 2015, 77, 458-468.	5.3	63
77	Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiology of Disease, 2015, 78, 172-195.	4.4	200
78	[11C]PBR28 PET Imaging is Sensitive to Neuroinflammation in the Aged Rat. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1331-1338.	4.3	26
79	Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson's disease. Lancet Neurology, The, 2015, 14, 1054-1064.	10.2	56
80	Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology, 2015, 85, 1283-1292.	1.1	25
81	Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism and Related Disorders, 2015, 21, 1156-1163.	2.2	41
82	Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N. Human Molecular Genetics, 2015, 24, 1691-1703.	2.9	122
83	Parkinson's disease, genetic variability and the Faroe Islands. Parkinsonism and Related Disorders, 2015, 21, 75-78.	2.2	11
84	Parkinsonism in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e349-e349.	7.6	20
85	Head injury, αâ€synuclein genetic variability and <scp>P</scp> arkinson's disease. European Journal of Neurology, 2015, 22, 874-878.	3.3	23
86	LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Human Molecular Genetics, 2015, 24, 1336-1349.	2.9	84
87	Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice. Frontiers in Cellular Neuroscience, 2014, 8, 301.	3.7	94
88	Disease Penetrance of Late-Onset Parkinsonism. JAMA Neurology, 2014, 71, 1535.	9.0	86
89	<i>LRRK2</i> exonic variants and risk of multiple system atrophy. Neurology, 2014, 83, 2256-2261.	1.1	46
90	In vivo dopaminergic and serotonergic dysfunction in <i>DCTN1</i> gene mutation carriers. Movement Disorders, 2014, 29, 1197-1201.	3.9	15

#	Article	IF	CITATIONS
91	Michael J. Fox Foundation LRRK2 Consortium: geographical differences in returning genetic research data to study participants. Genetics in Medicine, 2014, 16, 644-645.	2.4	7
92	The role ofSNCAandMAPTin Parkinson disease andLRRK2parkinsonism in the Tunisian Arab-Berber population. European Journal of Neurology, 2014, 21, e91-e92.	3.3	8
93	Behavioral Deficits and Striatal DA Signaling in LRRK2 p.G2019S Transgenic Rats: A Multimodal Investigation Including PET Neuroimaging. Journal of Parkinson's Disease, 2014, 4, 483-498.	2.8	32
94	Genetics and genomics of Parkinson's disease. Genome Medicine, 2014, 6, 48.	8.2	152
95	A comparative study of Parkinson's disease and leucine-rich repeat kinase 2 p.G2019S parkinsonism. Neurobiology of Aging, 2014, 35, 1125-1131.	3.1	83
96	A Novel <i>DCTN1</i> mutation with lateâ€onset parkinsonism and frontotemporal atrophy. Movement Disorders, 2014, 29, 1201-1204.	3.9	40
97	DNAJC13 mutations in Parkinson disease. Human Molecular Genetics, 2014, 23, 1794-1801.	2.9	258
98	The protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants. Neurobiology of Aging, 2014, 35, 266.e5-266.e14.	3.1	36
99	Identification of <scp>FUS</scp> p.R377W in essential tremor. European Journal of Neurology, 2014, 21, 361-363.	3.3	25
100	<i>LRRK2</i> parkinsonism in Tunisia and Norway: A comparative analysis of disease penetrance. Neurology, 2014, 83, 568-569.	1.1	47
101	Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease?. Parkinsonism and Related Disorders, 2014, 20, 584-589.	2.2	41
102	EIF4G1 gene mutations are not a common cause of Parkinson's disease in the Japanese population. Parkinsonism and Related Disorders, 2014, 20, 659-661.	2.2	13
103	Clinical, positron emission tomography, and pathological studies of DNAJC13 p.N855S Parkinsonism. Movement Disorders, 2014, 29, 1684-1687.	3.9	20
104	Measurements of Dopaminergic Function in the Rat Brain Using [18F]FDOPA PET and Microdialysis. , 2014, , 161.		0
105	Advances in the genetics of Parkinson disease. Nature Reviews Neurology, 2013, 9, 445-454.	10.1	414
106	The genetics of <scp>P</scp> arkinson's disease: Progress and therapeutic implications. Movement Disorders, 2013, 28, 14-23.	3.9	301
107	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
108	LRRK2 phosphorylates novel tau epitopes and promotes tauopathy. Acta Neuropathologica, 2013, 126, 809-827.	7.7	85

#	Article	IF	CITATIONS
109	STX6 rs1411478 is not associated with increased risk of Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 563-565.	2.2	16
110	Sequence variants in eukaryotic translation initiation factor 4-gamma (elF4G1) are associated with Lewy body dementia. Acta Neuropathologica, 2013, 125, 425-438.	7.7	20
111	Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis. EJNMMI Research, 2013, 3, 69.	2.5	20
112	Alphaâ€ s ynuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Movement Disorders, 2013, 28, 811-813.	3.9	545
113	<i>In-vivo</i> Measurement of LDOPA Uptake, Dopamine Reserve and Turnover in the Rat Brain Using [¹⁸ F]FDOPA PET. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 59-66.	4.3	33
114	Patient ontrol association study of the Leucineâ€Rich repeat kinase 2 (LRRK2) gene in South African Parkinson's disease patients. Movement Disorders, 2013, 28, 2039-2040.	3.9	7
115	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
116	An evaluation of the impact of <i>MAPT</i> , <i>SNCA</i> and <i>APOE</i> on the burden of Alzheimer's and Lewy body pathology. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 424-429.	1.9	50
117	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	3.2	94
118	Cognitive dysfunction in Tunisian LRRK2 associated Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 243-246.	2.2	46
119	First neuropathological description of a patient with Parkinson's disease and LRRK2 p.N1437H mutation. Parkinsonism and Related Disorders, 2012, 18, 332-338.	2.2	40
120	PARK2 variability in Polish Parkinson's disease patients - interaction with mitochondrial haplogroups. Parkinsonism and Related Disorders, 2012, 18, 520-524.	2.2	10
121	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.1	119
122	Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study. BMC Medical Genetics, 2012, 13, 16.	2.1	3
123	LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Molecular Neurodegeneration, 2012, 7, 25.	10.8	165
124	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
125	Glucocerebrosidase mutations in diffuse Lewy body disease. Parkinsonism and Related Disorders, 2011, 17, 55-57.	2.2	43
126	Subclinical signs in LRRK2 mutation carriers. Parkinsonism and Related Disorders, 2011, 17, 528-532.	2.2	33

#	Article	IF	CITATIONS
127	Lrrk2 p.Q1111H substitution and Parkinson's disease in Latin America. Parkinsonism and Related Disorders, 2011, 17, 629-631.	2.2	15
128	A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. Neurobiology of Aging, 2011, 32, 548.e9-548.e18.	3.1	56
129	Role of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease. Neurobiology of Aging, 2011, 32, 2108.e1-2108.e5.	3.1	23
130	Death-associated protein kinase 1 variation and Parkinson's disease. European Journal of Neurology, 2011, 18, 1090-1093.	3.3	6
131	<i>SNCA</i> , <i>MAPT</i> , and <i>GSK3B</i> in Parkinson disease: a gene-gene interaction study. European Journal of Neurology, 2011, 18, 876-881.	3.3	34
132	Parkinson-related genetics in patients treated with deep brain stimulation. Acta Neurologica Scandinavica, 2011, 123, 201-206.	2.1	33
133	Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiology of Disease, 2011, 41, 706-716.	4.4	172
134	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	10.2	294
135	VPS35 Mutations in Parkinson Disease. American Journal of Human Genetics, 2011, 89, 162-167.	6.2	747
136	VPS35 Mutations in Parkinson Disease. American Journal of Human Genetics, 2011, 89, 347.	6.2	3
137	Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. American Journal of Human Genetics, 2011, 89, 398-406.	6.2	250
138	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	1.4	5
139	Common variants in PARK loci and related genes and Parkinson's disease. Movement Disorders, 2011, 26, 280-288.	3.9	43
140	Genetic variants of αâ€synuclein are not associated with essential tremor. Movement Disorders, 2011, 26, 2552-2556.	3.9	14
141	Independent and joint effects of the <i>MAPT</i> and <i>SNCA</i> genes in Parkinson disease. Annals of Neurology, 2011, 69, 778-792.	5.3	92
142	Mutations in <i>LRRK2</i> increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 2011, 32, 1390-1397.	2.5	111
143	Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Human Molecular Genetics, 2011, 20, 1966-1974.	2.9	160
144	Genome-Wide Association Study Identifies Novel Restless Legs Syndrome Susceptibility Loci on 2p14 and 16q12.1. PLoS Genetics, 2011, 7, e1002171.	3.5	163

#	Article	IF	CITATIONS
145	A family with parkinsonism, essential tremor, restless legs syndrome, and depression. Neurology, 2011, 76, 1623-1630.	1.1	29
146	LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics, 2010, 11, 401-408.	1.4	114
147	Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiology of Disease, 2010, 40, 503-517.	4.4	243
148	Heterodimerization of Lrrk1–Lrrk2: Implications for LRRK2-associated Parkinson disease. Mechanisms of Ageing and Development, 2010, 131, 210-214.	4.6	18
149	Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Annals of Neurology, 2010, 67, 414-415.	5.3	39
150	Association of pyridoxal kinase and Parkinson disease. Annals of Neurology, 2010, 67, 409-411.	5.3	9
151	<i>LRRK2</i> variation and Parkinson's disease in African Americans. Movement Disorders, 2010, 25, 1973-1976.	3.9	11
152	Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson's disease. Movement Disorders, 2010, 25, 2156-2163.	3.9	108
153	Comprehensive sequencing of the <i>LRRK2</i> gene in patients with familial Parkinson's disease from North Africa. Movement Disorders, 2010, 25, 2052-2058.	3.9	23
154	Dopamine turnover increases in asymptomatic <i>LRRK2</i> mutations carriers. Movement Disorders, 2010, 25, 2717-2723.	3.9	103
155	<i>Calbindinâ€l </i> association and Parkinson's disease. European Journal of Neurology, 2010, 17, 208-211.	3.3	10
156	Association of the <i>MAPT</i> locus with Parkinson's disease. European Journal of Neurology, 2010, 17, 483-486.	3.3	51
157	Missing pieces in the Parkinson's disease puzzle. Nature Medicine, 2010, 16, 653-661.	30.7	621
158	α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra. PLoS ONE, 2010, 5, e12122.	2.5	138
159	Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease. Archives of Neurology, 2010, 67, 970-5.	4.5	63
160	Parkinson disease—moving beyond association. Nature Reviews Neurology, 2010, 6, 305-307.	10.1	9
161	LRRK2 and Parkinson Disease. Archives of Neurology, 2010, 67, 542-7.	4.5	137
162	α-Synuclein Gene May Interact with Environmental Factors in Increasing Risk of Parkinson's Disease. Neuroepidemiology, 2010, 35, 191-195.	2.3	61

#	Article	IF	CITATIONS
163	Elucidating the genetics and pathology of Perry syndrome. Journal of the Neurological Sciences, 2010, 289, 149-154.	0.6	112
164	Glucocerebrosidase mutations are not a common risk factor for Parkinson disease in North Africa. Neuroscience Letters, 2010, 477, 57-60.	2.1	30
165	Mitochondrial translation initiation factor 3 polymorphism and Parkinson's disease. Neuroscience Letters, 2010, 486, 228-230.	2.1	19
166	LINGO1 rs9652490 is associated with essential tremor and Parkinson disease. Parkinsonism and Related Disorders, 2010, 16, 109-111.	2.2	66
167	Histamine N-methyltransferase Thr105lle is not associated with Parkinson's disease or essential tremor. Parkinsonism and Related Disorders, 2010, 16, 112-114.	2.2	22
168	Genealogical studies in LRRK2-associated Parkinson's disease in central Norway. Parkinsonism and Related Disorders, 2010, 16, 527-530.	2.2	16
169	Autonomic failures in Perry syndrome with DCTN1 mutation. Parkinsonism and Related Disorders, 2010, 16, 612-614.	2.2	26
170	A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism and Related Disorders, 2010, 16, 650-655.	2.2	74
171	Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism and Related Disorders, 2010, 16, 686-687.	2.2	38
172	A comparative study of LRRK2, PINK1 and genetically undefined familial Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 391-395.	1.9	44
173	<i>ATP13A2</i> variability in Parkinson disease. Human Mutation, 2009, 30, 406-410.	2.5	37
174	Genotype–phenotype correlates in Taiwanese patients with earlyâ€onset recessive parkinsonism. Movement Disorders, 2009, 24, 104-108.	3.9	24
175	<i>FGF20</i> and Parkinson's disease: No evidence of association or pathogenicity via αâ€synuclein expression. Movement Disorders, 2009, 24, 455-459.	3.9	41
176	Reported mutations in <i>GIGYF2</i> are not a common cause of Parkinson's disease. Movement Disorders, 2009, 24, 619-620.	3.9	26
177	Reply: GICYF2 variants are not associated with Parkinson's disease in Italy. Movement Disorders, 2009, 24, 1868-1869.	3.9	1
178	Expanding the clinical phenotype of <i>SNCA</i> duplication carriers. Movement Disorders, 2009, 24, 1811-1819.	3.9	124
179	<i>GCH1</i> in earlyâ€onset Parkinson's disease. Movement Disorders, 2009, 24, 2070-2075.	3.9	17
180	Alphaâ€synuclein polymorphisms are associated with Parkinson's disease in a Saskatchewan population. Movement Disorders, 2009, 24, 2411-2414.	3.9	20

#	Article	IF	CITATIONS
181	Fine-mapping and candidate gene investigation within the PARK10 locus. European Journal of Human Genetics, 2009, 17, 336-343.	2.8	28
182	DCTN1 mutations in Perry syndrome. Nature Genetics, 2009, 41, 163-165.	21.4	285
183	<i>GRN</i> 3′UTR+78 C>T is not associated with risk for Parkinson's disease. European Journal of Neurology, 2009, 16, 909-911.	3.3	8
184	Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease. New England Journal of Medicine, 2009, 361, 1651-1661.	27.0	1,747
185	Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism and Related Disorders, 2009, 15, 281-286.	2.2	89
186	Alpha-synuclein multiplications with parkinsonism, dementia or progressive myoclonus?. Parkinsonism and Related Disorders, 2009, 15, 390-392.	2.2	29
187	Glucosidase-beta variations and Lewy body disorders. Parkinsonism and Related Disorders, 2009, 15, 414-416.	2.2	36
188	Haplotype analysis of Lrrk2 R1441H carriers with parkinsonism. Parkinsonism and Related Disorders, 2009, 15, 466-467.	2.2	31
189	Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism and Related Disorders, 2009, 15, 539-541.	2.2	27
190	Analysis of PArkin Co-Regulated Gene in a Taiwanese–Ethnic Chinese cohort with early-onset Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 417-421.	2.2	8
191	Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism and Related Disorders, 2009, 15, 692-696.	2.2	40
192	A Swedish family with de novo α-synuclein A53T mutation: Evidence for early cortical dysfunction. Parkinsonism and Related Disorders, 2009, 15, 627-632.	2.2	101
193	Phactr2 and Parkinson's disease. Neuroscience Letters, 2009, 453, 9-11.	2.1	19
194	DRD3 Ser9Gly and HS1BP3 Ala265Gly are not associated with Parkinson disease. Neuroscience Letters, 2009, 461, 74-75.	2.1	12
195	GCH1 expression in human cerebellum from healthy individuals is not gender dependant. Neuroscience Letters, 2009, 462, 73-75.	2.1	2
196	Dopamine Transporter Genetic Variants and Pesticides in Parkinson's Disease. Environmental Health Perspectives, 2009, 117, 964-969.	6.0	153
197	Clinical and Genetic Description of a Family With a High Prevalence of Autosomal Dominant Restless Legs Syndrome. Mayo Clinic Proceedings, 2009, 84, 134-138.	3.0	24
198	Clinical and genetic description of a family with a high prevalence of autosomal dominant restless legs syndrome. Mayo Clinic Proceedings, 2009, 84, 134-8.	3.0	7

#	Article	IF	CITATIONS
199	LRRK2 mutation in familial Parkinson's disease in a Taiwanese population: clinical, PET, and functional studies. Journal of Biomedical Science, 2008, 15, 661-7.	7.0	50
200	Clinical characteristics of Parkinson's disease among Jewish Ethnic groups in Israel. Journal of Neural Transmission, 2008, 115, 1279-1284.	2.8	16
201	Genetic association study of synphilin-1in idiopathic Parkinson's disease. BMC Medical Genetics, 2008, 9, 19.	2.1	11
202	In vivo silencing of alpha-synuclein using naked siRNA. Molecular Neurodegeneration, 2008, 3, 19.	10.8	114
203	Sensitization of Neuronal Cells to Oxidative Stress with Mutated Human α-Synuclein. Journal of Neurochemistry, 2008, 75, 2546-2554.	3.9	83
204	Genomic investigation of αâ€synuclein multiplication and parkinsonism. Annals of Neurology, 2008, 63, 743-750.	5.3	316
205	Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Annals of Neurology, 2008, 64, 88-92.	5.3	207
206	Multiple <i>alpha-synuclein</i> gene polymorphisms are associated with Parkinson's disease in a Norwegian population. Acta Neurologica Scandinavica, 2008, 118, 320-327.	2.1	73
207	LRRK2 Gly2019Ser penetrance in Arab–Berber patients from Tunisia: a case-control genetic study. Lancet Neurology, The, 2008, 7, 591-594.	10.2	172
208	The ancestry of LRRK2 Gly2019Ser parkinsonism – Authors' reply. Lancet Neurology, The, 2008, 7, 770-771.	10.2	5
209	Genetics of Parkinson's Disease. , 2008, , 9-33.		2
210	Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism and Related Disorders, 2008, 14, 465-470.	2.2	57
211	Dopamine β-hydroxylase â^'1021C>T association and Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, 544-547.	2.2	10
212	Genetic variation of Omi/HtrA2 and Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, 539-543.	2.2	61
213	The Genetics and molecular biology of αâ€synuclein. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 313-319.	1.8	1
214	A Genetic Risk Factor for Periodic Limb Movements in Sleep. New England Journal of Medicine, 2008, 358, 425-428.	27.0	56
215	LRRK2 (Leucine-Rich Repeat Kinase 2) Gene on PARK8 Locus in Families with Parkinsonism. , 2008, , 75-89.		0

216 Lrrk2 in the limelight!. Neurology, 2007, 69, 1732-1733.

1.1 5

#	Article	IF	CITATIONS
217	Aprataxin (APTX) gene mutations resembling multiple system atrophy. Parkinsonism and Related Disorders, 2007, 13, 139-142.	2.2	10
218	Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism and Related Disorders, 2007, 13, 89-92.	2.2	191
219	Quantitative PCR-based screening of α-synuclein multiplication in multiple system atrophy. Parkinsonism and Related Disorders, 2007, 13, 340-342.	2.2	35
220	Identification of potential protein interactors of Lrrk2. Parkinsonism and Related Disorders, 2007, 13, 382-385.	2.2	69
221	Lack of evidence for association of Parkin promoter polymorphism (PRKN-258) with increased risk of Parkinson's disease. Parkinsonism and Related Disorders, 2007, 13, 386-388.	2.2	6
222	Lrrk2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism and Related Disorders, 2007, 13, 509-515.	2.2	48
223	A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience, 2007, 147, 1047-1058.	2.3	100
224	Phenotypic associations of tau and ApoE in Parkinson's disease. Neuroscience Letters, 2007, 414, 141-144.	2.1	51
225	Variants in the LRRK1 gene and susceptibility to Parkinson's disease in Norway. Neuroscience Letters, 2007, 416, 299-301.	2.1	24
226	Beta-synuclein gene variants and Parkinson's disease: A preliminary case-control study. Neuroscience Letters, 2007, 420, 229-234.	2.1	20
227	Lrrk2 mutations in South America: A study of Chilean Parkinson's disease. Neuroscience Letters, 2007, 422, 193-197.	2.1	23
228	Identification of a Novel Risk Locus for Progressive Supranuclear Palsy by a Pooled Genomewide Scan of 500,288 Single-Nucleotide Polymorphisms. American Journal of Human Genetics, 2007, 80, 769-778.	6.2	68
229	Global distribution and reduced penetrance: Lrrk2 R1441C in an Irish Parkinson's disease kindred. Movement Disorders, 2007, 22, 291-292.	3.9	14
230	Pathogenicity of the Lrrk2 R1514Q substitution in Parkinson's disease. Movement Disorders, 2007, 22, 389-392.	3.9	8
231	The ups and downs of α-synuclein mRNA expression. Movement Disorders, 2007, 22, 293-295.	3.9	47
232	ELAVL4, PARK10, and the Celts. Movement Disorders, 2007, 22, 585-587.	3.9	24
233	Common variants in Parkinson's disease. Movement Disorders, 2007, 22, 899-900.	3.9	4
234	MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease. Journal of Neuroscience Research, 2007, 85, 1288-1294.	2.9	72

#	Article	IF	CITATIONS
235	Familial genes in sporadic disease: Common variants of α-synuclein gene associate with Parkinson's disease. Mechanisms of Ageing and Development, 2007, 128, 378-382.	4.6	62
236	Parkin Co-regulated Gene (PACRG) is regulated by the ubiquitin–proteasomal system and is present in the pathological features of parkinsonian diseases. Neurobiology of Disease, 2007, 27, 238-247.	4.4	32
237	Pathogenic Lrrk2 substitutions and Amyotrophic lateral sclerosis. Journal of Neural Transmission, 2007, 114, 327-329.	2.8	9
238	Clinical and genetic features of families with frontotemporal dementia and parkinsonism linked to chromosome 17 with a P301S tau mutation. Journal of Neural Transmission, 2007, 114, 947-950.	2.8	32
239	Lrrk2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathologica, 2007, 113, 601-606.	7.7	55
240	Leucine-rich repeat kinase 1: a paralog of LRRK2 and a candidate gene for Parkinson's disease. Neurogenetics, 2007, 8, 95-102.	1.4	34
241	Genomewide Association, Parkinson Disease, and PARK10. American Journal of Human Genetics, 2006, 78, 1084-1088.	6.2	53
242	LRRK2: a common pathway for parkinsonism, pathogenesis and prevention?. Trends in Molecular Medicine, 2006, 12, 76-82.	6.7	86
243	Digenic parkinsonism: Investigation of the synergistic effects of PRKN and LRRK2. Neuroscience Letters, 2006, 410, 80-84.	2.1	52
244	Genetics of restless legs syndrome. Parkinsonism and Related Disorders, 2006, 12, 1-7.	2.2	14
245	Atypical Parkinsonism and SCA8. Parkinsonism and Related Disorders, 2006, 12, 396.	2.2	3
246	Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience, 2006, 139, 791-794.	2.3	110
247	LRRK2 in Parkinson's disease: protein domains and functional insights. Trends in Neurosciences, 2006, 29, 286-293.	8.6	439
248	Phenotypic Commonalities in Familial and Sporadic Parkinson Disease. Archives of Neurology, 2006, 63, 579.	4.5	20
249	Clinical Heterogeneity of the LRRK2 G2019S Mutation. Archives of Neurology, 2006, 63, 1242.	4.5	29
250	LRRK2 mutations are a common cause of Parkinson's disease in Spain. European Journal of Neurology, 2006, 13, 391-394.	3.3	60
251	Lrrk2 R1441 substitution and progressive supranuclear palsy. Neuropathology and Applied Neurobiology, 2006, 32, 23-25.	3.2	36
252	Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Reviews Genetics, 2006, 7, 306-318.	16.3	642

#	Article	IF	CITATIONS
253	Collaborative Analysis of α-Synuclein Gene Promoter Variability and Parkinson Disease. JAMA - Journal of the American Medical Association, 2006, 296, 661.	7.4	467
254	Parkinson's disease: a rethink of rodent models. Experimental Brain Research, 2006, 173, 196-204.	1.5	75
255	Clinicogenetic study of mutations inLRRK2 exon 41 in Parkinson's disease patients from 18 countries. Movement Disorders, 2006, 21, 1102-1108.	3.9	113
256	Lrrk2 and Lewy body disease. Annals of Neurology, 2006, 59, 388-393.	5.3	259
257	Clinical heterogeneity of αâ€synuclein gene duplication in Parkinson's disease. Annals of Neurology, 2006, 59, 298-309.	5.3	308
258	Biochemical and pathological characterization of Lrrk2. Annals of Neurology, 2006, 59, 315-322.	5.3	229
259	Clinical Features of Parkinson Disease Patients With Homozygous Leucine-Rich Repeat Kinase 2 G2019S Mutations. Archives of Neurology, 2006, 63, 1250.	4.5	91
260	LRRK2 Gene and Tremor-Dominant Parkinsonism. Archives of Neurology, 2006, 63, 1346.	4.5	6
261	FMR1 Premutations Associated With Fragile X–Associated Tremor/Ataxia Syndrome in Multiple System Atrophy. Archives of Neurology, 2005, 62, 962-6.	4.5	59
262	PET in LRRK2 mutations: comparison to sporadic Parkinson's disease and evidence for presymptomatic compensation. Brain, 2005, 128, 2777-2785.	7.6	242
263	Pathophysiology, pleotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochemical Society Transactions, 2005, 33, 586-590.	3.4	39
264	PARK11 is not linked with Parkinson's disease in European families. European Journal of Human Genetics, 2005, 13, 193-197.	2.8	23
265	LRRK2 mutations are not common in Alzheimer's disease. Mechanisms of Ageing and Development, 2005, 126, 1201-1205.	4.6	33
266	Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 72-74.	1.7	27
267	Interaction of αâ€synuclein and tau genotypes in Parkinson's disease. Annals of Neurology, 2005, 57, 439-443.	5.3	49
268	Clinical features of <i>LRRK2</i> â€associated Parkinson's disease in central Norway. Annals of Neurology, 2005, 57, 762-765.	5.3	184
269	Tau kinases and Parkinson's disease: Guilt by association?. Annals of Neurology, 2005, 58, 819-820.	5.3	2
270	Parkinsonism, FXTAS, and <i>FMR1</i> premutations. Movement Disorders, 2005, 20, 230-233.	3.9	50

#	Article	IF	CITATIONS
271	Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005, 6, 171-177.	1.4	237
272	Clinical and genetic evaluation of 8 Polish families with levodopa-responsive parkinsonism. Journal of Neural Transmission, 2005, 112, 1487-1502.	2.8	1
273	Parkin Mutations and Early-Onset Parkinsonism in a Taiwanese Cohort. Archives of Neurology, 2005, 62, 82.	4.5	84
274	LRRK2 mutations and Parkinsonism. Lancet, The, 2005, 365, 1229-1230.	13.7	33
275	Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations. American Journal of Human Genetics, 2005, 76, 672-680.	6.2	524
276	High-Resolution Whole-Genome Association Study of Parkinson Disease. American Journal of Human Genetics, 2005, 77, 685-693.	6.2	479
277	Homozygous partial genomic triplication of the parkin gene in early-onset parkinsonism. Neuroscience Letters, 2005, 380, 257-259.	2.1	7
278	UCHL1 is associated with Parkinson's disease: A case-unaffected sibling and case-unrelated control study. Neuroscience Letters, 2005, 381, 131-134.	2.1	25
279	LRRK2 R1441G in Spanish patients with Parkinson's disease. Neuroscience Letters, 2005, 382, 309-311.	2.1	97
280	The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson's disease patients. Neuroscience Letters, 2005, 384, 327-329.	2.1	153
281	Sporadic SCA8 mutation resembling corticobasal degeneration. Parkinsonism and Related Disorders, 2005, 11, 147-150.	2.2	24
282	The Effect of tau genotype on clinical features in FTDP-17. Parkinsonism and Related Disorders, 2005, 11, 205-208.	2.2	31
283	Clinical traits of LRRK2-associated Parkinson's disease in Ireland: A link between familial and idiopathic PD. Parkinsonism and Related Disorders, 2005, 11, 349-352.	2.2	38
284	Parkin genetics: one model for Parkinson's disease. Human Molecular Genetics, 2004, 13, 127R-133.	2.9	153
285	Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. Journal of Medical Genetics, 2004, 41, 900-907.	3.2	38
286	Clinical Findings in a Large Family With a Parkin Ex3Δ40 Mutation. Archives of Neurology, 2004, 61, 701.	4.5	24
287	Genome-Wide Analysis of the Parkinsonism-Dementia Complex of Guam. Archives of Neurology, 2004, 61, 1889-97.	4.5	44
288	N-myc Regulates Parkin Expression. Journal of Biological Chemistry, 2004, 279, 28896-28902.	3.4	46

#	Article	IF	CITATIONS
289	Multiplication of the α-Synuclein Gene Is Not a Common Disease Mechanism in Lewy Body Disease. Journal of Molecular Neuroscience, 2004, 24, 337-342.	2.3	14
290	Genetic association studies in Alzheimer's disease research: challenges and opportunities. Statistics in Medicine, 2004, 23, 169-178.	1.6	21
291	αâ€6ynuclein promoter confers susceptibility to Parkinson's disease. Annals of Neurology, 2004, 56, 591-595.	5.3	200
292	Parkinson's disease in Ireland: Clinical presentation and genetic heterogeneity in patients with parkin mutations. Movement Disorders, 2004, 19, 677-681.	3.9	15
293	It's a double knock-out! The quaking mouse is a spontaneous deletion of parkin and parkin co-regulated gene (PACRG). Movement Disorders, 2004, 19, 101-104.	3.9	58
294	Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Movement Disorders, 2004, 19, 622-629.	3.9	127
295	Lack of mutations in DJ-1 in a cohort of Taiwanese ethnic Chinese with early-onset parkinsonism. Movement Disorders, 2004, 19, 1065-1069.	3.9	27
296	Identification of the Human Ubiquitin Specific Protease 31 (USP31) Gene: Structure, Sequence and Expression Analysis. DNA Sequence, 2004, 15, 9-14.	0.7	19
297	Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron, 2004, 44, 601-607.	8.1	2,653
298	α-Synuclein missense and multiplication mutations in autosomal dominant Parkinson's disease. Neuroscience Letters, 2004, 367, 97-100.	2.1	26
299	The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval. American Journal of Human Genetics, 2004, 74, 11-19.	6.2	195
300	Linkage Disequilibrium and Association of MAPT H1 in Parkinson Disease. American Journal of Human Genetics, 2004, 75, 669-677.	6.2	145
301	α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet, The, 2004, 364, 1167-1169.	13.7	1,858
302	α-Synuclein Locus Triplication Causes Parkinson's Disease. Science, 2003, 302, 841-841.	12.6	3,836
303	SCA2 may present as levodopa-responsive parkinsonism. Movement Disorders, 2003, 18, 425-429.	3.9	99
304	Complex interactions in Parkinson's disease: A two-phased approach. Movement Disorders, 2003, 18, 631-636.	3.9	30
305	Marked variation in clinical presentation and age of onset in a family with a heterozygous parkin mutation. Movement Disorders, 2003, 18, 758-763.	3.9	27
306	Dopa-responsive dystonia presenting with prominent isolated bilateral resting leg tremor: Evidence for a role ofparkin?. Movement Disorders, 2003, 18, 1070-1072.	3.9	7

#	Article	IF	CITATIONS
307	Case-control study of the ?-synuclein interacting protein gene and Parkinson's disease. Movement Disorders, 2003, 18, 1233-1239.	3.9	13
308	Parkin variants in North American Parkinson's disease: Cases and controls. Movement Disorders, 2003, 18, 1306-1311.	3.9	131
309	Coâ€ordinate transcriptional regulation of dopamine synthesis genes by αâ€synuclein in human neuroblastoma cell lines. Journal of Neurochemistry, 2003, 85, 957-968.	3.9	143
310	Identification of a Novel Gene Linked to Parkin via a Bi-directional Promoter. Journal of Molecular Biology, 2003, 326, 11-19.	4.2	111
311	Parkin is not regulated by the unfolded protein response in human neuroblastoma cells. Neuroscience Letters, 2003, 341, 139-142.	2.1	17
312	Two large Polish kindreds with levodopa-responsive Parkinsonism not linked to known Parkinsonian genes and loci. Parkinsonism and Related Disorders, 2003, 9, 193-200.	2.2	2
313	Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Human Molecular Genetics, 2003, 12, 1223-1231.	2.9	124
314	RING finger 1 mutations in Parkin produce altered localization of the protein. Human Molecular Genetics, 2003, 12, 2957-2965.	2.9	138
315	Identification of a Novel Gene Linked to Parkin via a Bidirectional Promoter. Annals of the New York Academy of Sciences, 2003, 991, 311-314.	3.8	0
316	Accurate Determination of Ataxin-2 Polyglutamine Expansion in Patients with Intermediate-Range Repeats. Genetic Testing and Molecular Biomarkers, 2002, 6, 217-220.	1.7	18
317	Functional association of the parkin gene promoter with idiopathic Parkinson's disease. Human Molecular Genetics, 2002, 11, 2787-2792.	2.9	95
318	Parkin Protects against the Toxicity Associated with Mutant α-Synuclein. Neuron, 2002, 36, 1007-1019.	8.1	542
319	A family with a tau P301L mutation presenting with parkinsonism. Parkinsonism and Related Disorders, 2002, 9, 121-123.	2.2	12
320	Parkinson's Genetics: Molecular Insights for the New Millennium. NeuroToxicology, 2002, 23, 503-514.	3.0	19
321	Tau neurotoxicity without the lesions: a fly challenges a tangled web. Trends in Neurosciences, 2002, 25, 327-329.	8.6	22
322	The human sideroflexin 5 (SFXN5) gene: sequence, expression analysis and exclusion as a candidate for PARK3. Gene, 2002, 285, 229-237.	2.2	22
323	Clinical,18F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism andparkin gene mutations. Movement Disorders, 2002, 17, 670-675.	3.9	44
324	Case-Control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson's disease. Movement Disorders, 2002, 17, 1305-1311.	3.9	44

#	Article	IF	CITATIONS
325	Case-control study of estrogen receptor gene polymorphisms in Parkinson's disease. Movement Disorders, 2002, 17, 509-512.	3.9	16
326	Genetic Analysis of Synphilin-1 in Familial Parkinson's Disease. Neurobiology of Disease, 2001, 8, 317-323.	4.4	18
327	Lack of Nigral Pathology in Transgenic Mice Expressing Human α-Synuclein Driven by the Tyrosine Hydroxylase Promoter. Neurobiology of Disease, 2001, 8, 535-539.	4.4	273
328	Origin of the Mutations in the parkin Gene in Europe: Exon Rearrangements Are Independent Recurrent Events, whereas Point Mutations May Result from Founder Effects. American Journal of Human Genetics, 2001, 68, 617-626.	6.2	106
329	Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Molecular Brain Research, 2001, 97, 94-102.	2.3	57
330	Identification and characterization of the human parkin gene promoter. Journal of Neurochemistry, 2001, 78, 1146-1152.	3.9	31
331	Caseâ€control study of the extended tau gene haplotype in Parkinson's disease. Annals of Neurology, 2001, 50, 658-661.	5.3	54
332	Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. European Journal of Human Genetics, 2001, 9, 659-666.	2.8	46
333	Spinocerebellar Ataxia Type 3 Phenotypically Resembling Parkinson Disease in a Black Family. Archives of Neurology, 2001, 58, 296.	4.5	135
334	Case-control study of debrisoquine 4-hydroxylase, n-acetyltransferase 2, and apolipoprotein e gene polymorphisms in Parkinson's disease. Movement Disorders, 2000, 15, 714-719.	3.9	44
335	Heterotrisomy, a significant contributing factor to ventricular septal defect associated with Down syndrome?. Human Genetics, 2000, 107, 476-482.	3.8	25
336	α-Synuclein Shares Physical and Functional Homology with 14-3-3 Proteins. Journal of Neuroscience, 1999, 19, 5782-5791.	3.6	513
337	A chromosome 4p haplotype segregating with Parkinson's disease and postural tremor. Human Molecular Genetics, 1999, 8, 81-85.	2.9	229
338	The genetics of disorders withsynuclein pathology and parkinsonism. Human Molecular Genetics, 1999, 8, 1901-1905.	2.9	36
339	No pathogenic mutations in the persyn gene in Parkinson's disease. Neuroscience Letters, 1999, 259, 65-66.	2.1	15
340	No pathogenic mutations in the β-synuclein gene in Parkinson's disease. Neuroscience Letters, 1999, 269, 107-109.	2.1	27
341	The lle93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neuroscience Letters, 1999, 270, 1-4.	2.1	75
342	A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Medicine, 1998, 4, 452-455.	30.7	347

#	Article	IF	CITATIONS
343	Molecular mapping of alzheimerâ€ŧype dementia in Down's syndrome. Annals of Neurology, 1998, 43, 380-383.	5.3	334
344	Low frequency of ?-synuclein mutations in familial Parkinson's disease. Annals of Neurology, 1998, 43, 394-397.	5.3	153
345	Allelic variability in D21S11, but not in APP or APOE, is associated with cognitive decline in Down syndrome. NeuroReport, 1997, 8, 1645-1649.	1.2	20
346	Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Annals of Neurology, 1997, 42, 794-798.	5.3	83
347	Cenetic variation in the COL6A1 region is associated with congenital heart defects in trisomy 21 (Down's syndrome). Annals of Human Genetics, 1995, 59, 253-269.	0.8	52
348	Unusual genotypes in the COL6A1 gene in parents of children with trisomy 21 and major congenital heart defects. Human Genetics, 1994, 93, 443-6.	3.8	15
349	The <i>SON</i> gene encodes a conserved DNA binding protein mapping to human chromosome 21. Annals of Human Genetics, 1994, 58, 25-34.	0.8	25
350	Polymorphisms and linkage disequilibrium in the COL6A1 and COL6A2 gene cluster: novel DNA polymorphisms in the region of a candidate gene for congenital heart defects in Down's syndrome. Human Genetics, 1993, 90, 521-5.	3.8	16