Rune Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735780/publications.pdf

Version: 2024-02-01

98 9,112 48
papers citations h-index

110 110 110 13054 all docs docs citations times ranked citing authors

91

g-index

#	Article	IF	Citations
1	The role of IFNL4 in liver inflammation and progression of fibrosis. Genes and Immunity, 2022, 23, 111-117.	4.1	2
2	Effective Interferon Lambda Treatment Regimen To Control Lethal MERS-CoV Infection in Mice. Journal of Virology, 2022, 96, e0036422.	3.4	8
3	The presence of interferon affects the progression of non-alcoholic fatty liver disease. Genes and Immunity, 2022, 23, 157-165.	4.1	2
4	Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus. Scientific Reports, 2022, 12, .	3.3	2
5	Interferon lambda 4 genotype and pathway in alcoholic hepatitis. Scandinavian Journal of Gastroenterology, 2021, 56, 304-311.	1.5	0
6	Disparate temperature-dependent virus–host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLoS Biology, 2021, 19, e3001158.	5.6	79
7	Selective Janus kinase inhibition preserves interferon-l̂»â€"mediated antiviral responses. Science Immunology, 2021, 6, .	11.9	16
8	SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity. EBioMedicine, 2021, 68, 103410.	6.1	56
9	Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature, 2021, 597, 114-118.	27.8	84
10	SARS-CoV-2 suppresses IFN \hat{I}^2 production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathogens, 2021, 17, e1009800.	4.7	74
11	Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Frontiers in Immunology, 2021, 12, 749325.	4.8	5
12	The Impact of IFNλ4 on the Adaptive Immune Response to SARS-CoV-2 Infection. Journal of Interferon and Cytokine Research, 2021, 41, 407-414.	1.2	3
13	Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nature Communications, 2021, 12, 7009.	12.8	22
14	B Cell Intrinsic STING Signaling Is Not Required for Autoreactive Germinal Center Participation. Frontiers in Immunology, 2021, 12, 782558.	4.8	3
15	Length dependent activation of OAS proteins by dsRNA. Cytokine, 2020, 126, 154867.	3.2	18
16	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	14.5	82
17	Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Nucleic Acids Research, 2020, 48, 11421-11433.	14.5	28
18	2′3′-cGAMP triggers a STING- and NF-κB–dependent broad antiviral response in <i>Drosophila</i> Signaling, 2020, 13, .	^{Ce} 3.6	46

#	Article	IF	CITATIONS
19	COVID-19 and emerging viral infections: The case for interferon lambda. Journal of Experimental Medicine, 2020, 217, .	8.5	177
20	Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 2020, 369, 712-717.	12.6	333
21	Systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome due to a CASP1 variant causing inflammasome hyperactivation. Rheumatology, 2020, 59, 3099-3105.	1.9	12
22	Inhibition of SARS–CoV-2 by type I and type III interferons. Journal of Biological Chemistry, 2020, 295, 13958-13964.	3.4	220
23	Weak Induction of Interferon Expression by Severe Acute Respiratory Syndrome Coronavirus 2 Supports Clinical Trials of Interferon-λ to Treat Early Coronavirus Disease 2019. Clinical Infectious Diseases, 2020, 71, 1410-1412.	5.8	88
24	The <i>IFNL4</i> Gene Is a Noncanonical Interferon Gene with a Unique but Evolutionarily Conserved Regulation. Journal of Virology, 2020, 94, .	3.4	14
25	SARSâ€CoVâ€2 evades immune detection in alveolar macrophages. EMBO Reports, 2020, 21, e51252.	4.5	70
26	The role of IFN in the development of NAFLD and NASH. Cytokine, 2019, 124, 154519.	3.2	31
27	Identification of an <i>IRF3</i> variant and defective antiviral interferon responses in a patient with severe influenza. European Journal of Immunology, 2019, 49, 2111-2114.	2.9	13
28	Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. Journal of Virology, 2019, 93, .	3.4	25
29	The Influence of the rs30461 Single Nucleotide Polymorphism on IFN-λ1 Activity and Secretion. Journal of Interferon and Cytokine Research, 2019, 39, 661-667.	1.2	4
30	Defective interferon priming and impaired antiviral responses in a patient with an IRF7 variant and severe influenza. Medical Microbiology and Immunology, 2019, 208, 869-876.	4.8	19
31	THU-281-Single nucleotide polymorphisms associated with no interferon lambda 4 production are associated with reduced mortality in alcoholic hepatitis. Journal of Hepatology, 2019, 70, e286.	3.7	0
32	Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature Immunology, 2019, 20, 593-601.	14.5	68
33	Frequently used bioinformatics tools overestimate the damaging effect of allelic variants. Genes and Immunity, 2019, 20, 10-22.	4.1	12
34	What makes the hepatitis C virus evolve?. ELife, 2019, 8, .	6.0	1
35	Defective RNA sensing by RIG-I in severe influenza virus infection. Clinical and Experimental Immunology, 2018, 192, 366-376.	2.6	39
36	Species Specificity of Type III Interferon Activity and Development of a Sensitive Luciferase-Based Bioassay for Quantitation of Mouse Interferon-law. Journal of Interferon and Cytokine Research, 2018, 38, 469-479.	1.2	11

3

#	Article	IF	CITATIONS
37	IFN-l̂» prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. ELife, 2018, 7, .	6.0	198
38	The Kinase IKKβ Regulates a STING- and NF-κB-Dependent Antiviral Response Pathway in Drosophila. Immunity, 2018, 49, 225-234.e4.	14.3	114
39	The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of Kaposi's sarcoma-associated herpesvirus (KSHV) and interacts with the KSHV ORF20 protein. PLoS Pathogens, 2018, 14, e1006937.	4.7	28
40	A Highly Sensitive Anion Exchange Chromatography Method for Measuring cGAS Activity in vitro. Bio-protocol, 2018, 8, e3055.	0.4	3
41	IFN-λ3, not IFN-λ4, likely mediates IFNL3–IFNL4 haplotype–dependent hepatic inflammation and fibrosis. Nature Genetics, 2017, 49, 795-800.	21.4	86
42	<scp>cGAS</scp> is activated by <scp>DNA</scp> in a lengthâ€dependent manner. EMBO Reports, 2017, 18, 1707-1715.	4.5	201
43	<scp>IFN</scp> ĵ» is a potent antiâ€influenza therapeutic without the inflammatory side effects of <scp>IFN</scp> ĵ± treatment. EMBO Molecular Medicine, 2016, 8, 1099-1112.	6.9	228
44	Ectodermal dysplasia with immunodeficiency caused by a branch-point mutation in IKBKG/NEMO. Journal of Allergy and Clinical Immunology, 2016, 138, 1706-1709.e4.	2.9	11
45	<scp>HSV</scp> â€1 <scp>ICP</scp> 27 targets the <scp>TBK</scp> 1â€activated STING signalsome to inhibit virusâ€induced type I <scp>IFN</scp> Âexpression. EMBO Journal, 2016, 35, 1385-1399.	7.8	173
46	Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 2132-2139.	3.2	75
47	Cellular Mechanism for Impaired Hepatitis C Virus Clearance by Interferon Associated with IFNL3 Gene Polymorphisms Relates to Intrahepatic Interferon-λ Expression. American Journal of Pathology, 2016, 186, 938-951.	3.8	13
48	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
49	Unraveling the molecular mechanism governing the tissue specific expression of IFNλR1. Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 795-9.	0.2	O
50	Rapid Uptake and Inhibition of Viral Propagation by Extracellular OAS1. Journal of Interferon and Cytokine Research, 2015, 35, 359-366.	1.2	7
51	Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells. Genes and Immunity, 2015, 16, 414-421.	4.1	44
52	Functional IRF3 deficiency in a patient with herpes simplex encephalitis. Journal of Experimental Medicine, 2015, 212, 1371-1379.	8.5	171
53	Guarding the frontiers: the biology of type III interferons. Nature Immunology, 2015, 16, 802-809.	14.5	279
54	Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Research, 2015, 43, 5236-5248.	14.5	57

#	Article	IF	Citations
55	A conserved sugar bridge connected to the WSXWS motif has an important role for transport of IL-21R to the plasma membrane. Genes and Immunity, 2015, 16, 405-413.	4.1	19
56	Identification of essential regulatory elements responsible for the explicit expression of IL-28Rα and their effect on critical SNPs using in-Silico methods. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1523-32.	0.2	0
57	The 2′-5′-Oligoadenylate Synthetase 3 Enzyme Potently Synthesizes the 2′-5′-Oligoadenylates Require RNase L Activation. Journal of Virology, 2014, 88, 14222-14231.	ed for 3.4	59
58	Reduced IFN \hat{l} »4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. Nature Communications, 2014, 5, 5699.	12.8	117
59	The crystal structure of zebrafish IL-22 reveals an evolutionary, conserved structure highly similar to that of human IL-22. Genes and Immunity, 2014, 15, 293-302.	4.1	24
60	OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nature Reviews Immunology, 2014, 14, 521-528.	22.7	246
61	Antiviral Activity of Human OASL Protein Is Mediated by Enhancing Signaling of the RIG-I RNA Sensor. Immunity, 2014, 40, 936-948.	14.3	201
62	Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses. EMBO Journal, 2013, 32, 3055-3065.	7.8	177
63	Efficient Replication of the Novel Human Betacoronavirus EMC on Primary Human Epithelium Highlights Its Zoonotic Potential. MBio, 2013, 4, e00611-12.	4.1	183
64	Crystal Structure of Interleukin-21 Receptor (IL-21R) Bound to IL-21 Reveals That Sugar Chain Interacting with WSXWS Motif Is Integral Part of IL-21R. Journal of Biological Chemistry, 2012, 287, 9454-9460.	3.4	76
65	The Oligoadenylate Synthetase Family: An Ancient Protein Family with Multiple Antiviral Activities. Journal of Interferon and Cytokine Research, 2011, 31, 41-47.	1.2	243
66	Crystal Structure of Zebrafish Interferons I and II Reveals Conservation of Type I Interferon Structure in Vertebrates. Journal of Virology, 2011, 85, 8181-8187.	3.4	85
67	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	4.7	107
68	Conformational diversity in prion protein variants influences intermolecular \hat{l}^2 -sheet formation. EMBO Journal, 2010, 29, 251-262.	7.8	105
69	Extracellular 2′-5′ Oligoadenylate Synthetase Stimulates RNase L-Independent Antiviral Activity: a Novel Mechanism of Virus-Induced Innate Immunity. Journal of Virology, 2010, 84, 11898-11904.	3.4	93
70	Selection of a Novel and Highly Specific Tumor Necrosis Factor \hat{l}_{\pm} (TNF \hat{l}_{\pm}) Antagonist. Journal of Biological Chemistry, 2010, 285, 12096-12100.	3.4	15
71	Pandemic H1N1 2009 Influenza A Virus Induces Weak Cytokine Responses in Human Macrophages and Dendritic Cells and Is Highly Sensitive to the Antiviral Actions of Interferons. Journal of Virology, 2010, 84, 1414-1422.	3.4	143
72	Rational Design of Interleukin-21 Antagonist through Selective Elimination of the \hat{l}^3 C Binding Epitope. Journal of Biological Chemistry, 2010, 285, 12223-12231.	3.4	13

#	Article	IF	Citations
73	The Structure of Human Interferon Lambda and What It Has Taught Us. Journal of Interferon and Cytokine Research, 2010, 30, 565-571.	1.2	25
74	Lambda Interferons: New Cytokines with Old Functions. Pharmaceuticals, 2010, 3, 795-809.	3.8	21
75	Interferon-λ Is Functionally an Interferon but Structurally Related to the Interleukin-10 Family. Journal of Biological Chemistry, 2009, 284, 20869-20875.	3.4	176
76	The Two Groups of Zebrafish Virus-Induced Interferons Signal via Distinct Receptors with Specific and Shared Chains. Journal of Immunology, 2009, 183, 3924-3931.	0.8	220
77	Human interferon- \hat{l} »3 is a potent member of the type III interferon family. Genes and Immunity, 2009, 10, 125-131.	4.1	150
78	Differential Regulation of the <i>OASL</i> and <i>OASI</i> Genes in Response to Viral Infections. Journal of Interferon and Cytokine Research, 2009, 29, 199-208.	1.2	100
79	2'-5' Oligoadenylate synthetase shares active site architecture with the archaeal CCA-adding enzyme. Cellular and Molecular Life Sciences, 2008, 65, 2613-2620.	5.4	26
80	The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminal ubiquitin-like domain. Journal of General Virology, 2008, 89, 2767-2772.	2.9	56
81	An Important Role for Type III Interferon (IFN-λ/IL-28) in TLR-Induced Antiviral Activity. Journal of Immunology, 2008, 180, 2474-2485.	0.8	387
82	Type III Interferon (IFN) Induces a Type I IFN-Like Response in a Restricted Subset of Cells through Signaling Pathways Involving both the Jak-STAT Pathway and the Mitogen-Activated Protein Kinases. Journal of Virology, 2007, 81, 7749-7758.	3.4	404
83	Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. Journal of Virology, 2006, 80, 5059-5064.	3.4	828
84	A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nature Biotechnology, 2006, 24, 559-565.	17.5	343
85	Natural Mutations in a 2 â^'5  Oligoadenylate Synthetase Transgene Revealed Residues Essential for Enzyme Activityâ€. Biochemistry, 2005, 44, 6837-6843.	2.5	4
86	Interaction between the 2'-5' oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. FEBS Journal, 2004, 271, 628-636.	0.2	25
87	Crystal Structure of the 2′â€Specific and Doubleâ€Stranded RNAâ€Activated Interferonâ€Induced Antiviral Protein 2′â€5′â€Oligoadenylate Synthetase. Scandinavian Journal of Immunology, 2004, 59, 617-617.	2.7	0
88	Crystal Structure of the 2′-Specific and Double-Stranded RNA-Activated Interferon-Induced Antiviral Protein 2′-5′-Oligoadenylate Synthetase. Molecular Cell, 2003, 12, 1173-1185.	9.7	153
89	Characterization of the 2'-5'-oligoadenylate synthetase ubiquitin-like family. Nucleic Acids Research, 2003, 31, 3166-3173.	14.5	91
90	Gene structure of the murine 2′-5′-oligoadenylate synthetase family. Cellular and Molecular Life Sciences, 2002, 59, 1212-1222.	5.4	47

#	Article	IF	CITATION
91	Inhibition of 2′-5′ oligoadenylate synthetase by divalent metal ions. FEBS Letters, 2001, 507, 54-58.	2.8	10
92	Modular Structure of PACT: Distinct Domains for Binding and Activating PKR. Molecular and Cellular Biology, 2001, 21, 1908-1920.	2.3	145
93	Gene structure and function of the $2\hat{a}\in^2$ -oligoadenylate synthetase family. Cellular and Molecular Life Sciences, 2000, 57, 1593-1612.	5.4	177
94	Selective Degradation of 2′-Adenylated Diadenosine Tri- and Tetraphosphates, Ap3A and Ap4A, by Two Specific Human Dinucleoside Polyphosphate Hydrolases. Archives of Biochemistry and Biophysics, 2000, 373, 218-224.	3.0	12
95	2′-Adenylated derivatives of Ap3A activate RNase L. FEBS Letters, 1999, 457, 9-12.	2.8	5
96	p59OASL, a 2'-5' oligoadenylate synthetase like protein: a novel human gene related to the 2'-5' oligoadenylate synthetase family. Nucleic Acids Research, 1998, 26, 4121-4128.	14.5	100
97	Activation of 2′-5′ Oligoadenylate Synthetase by Single-stranded and Double-stranded RNA Aptamers. Journal of Biological Chemistry, 1998, 273, 3236-3246.	3.4	82
98	Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase1. FEBS Letters, 1997, 408, 177-181.	2.8	25