Huijun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735534/publications.pdf

Version: 2024-02-01

361413 477307 1,078 65 20 29 citations h-index g-index papers 66 66 66 1462 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The use of SNAP and T1-weighted VISTA in cervical artery dissection. Interventional Neuroradiology, 2023, 29, 235-242.	1.1	2
2	Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm. Journal of Neurology, 2022, 269, 2715-2719.	3.6	1
3	Multi-Task Deep Learning Approach for Simultaneous Objective Response Prediction and Tumor Segmentation in HCC Patients with Transarterial Chemoembolization. Journal of Personalized Medicine, 2022, 12, 248.	2.5	6
4	Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study. European Radiology, 2022, 32, 5276-5286.	4.5	3
5	Optimization of the Contrast Agent Injection Protocol for Carotid Artery Dynamic <scp>Contrastâ€Enhanced</scp> Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging, 2022, , .	3.4	O
6	Motion correction for native myocardial <i>T</i> ₁ mapping using selfâ€supervised deep learning registration with contrast separation. NMR in Biomedicine, 2022, 35, .	2.8	6
7	Added value of femoral artery atherosclerosis for determining severity of white matter lesion by carotid atherosclerosis: a magnetic resonance imaging study. Acta Radiologica, 2021, 62, 1112-1121.	1.1	1
8	Preoperative Remnant Liver Function Evaluation Using a Routine Clinical Dynamic Gd-EOB-DTPA-Enhanced MRI Protocol in Patients with Hepatocellular Carcinoma. Annals of Surgical Oncology, 2021, 28, 3672-3682.	1.5	15
9	ASO Author Reflections: Preoperative Assessment of Remnant Liver Function. Annals of Surgical Oncology, 2021, 28, 3683-3684.	1.5	O
10	A novel sequence for simultaneous measurement of wholeâ€brain static and dynamic MRA, intracranial vessel wall image, and T 1 â€weighted structural brain MRI. Magnetic Resonance in Medicine, 2021, 85, 316-325.	3.0	3
11	Associations between haemodynamics and wall enhancement of intracranial aneurysm. Stroke and Vascular Neurology, 2021, 6, 467-475.	3.3	17
12	Radiomics study on pulmonary infarction mimicking communityâ€acquired pneumonia. Clinical Respiratory Journal, 2021, 15, 661-669.	1.6	1
13	Deep learning–enhanced T ₁ mapping with spatialâ€temporal and physical constraint. Magnetic Resonance in Medicine, 2021, 86, 1647-1661.	3.0	10
14	Angiographic contrast mechanism comparison between Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) sequence and Time of Flight (TOF) sequence for intracranial artery. Magnetic Resonance Imaging, 2020, 66, 199-207.	1.8	9
15	Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: validation by histology. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 38.	3.3	12
16	Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS). Magnetic Resonance in Medicine, 2020, 84, 1024-1034.	3.0	21
17	Phase-constrained reconstruction of high-resolution multi-shot diffusion weighted image. Journal of Magnetic Resonance, 2020, 312, 106690.	2.1	5
18	A Self-Supervised Learning Framework for Under-Sampling Pattern Design Using Graph Convolution Network. Investigative Magnetic Resonance Imaging, 2020, 24, 232.	0.4	0

#	Article	IF	Citations
19	Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magnetic Resonance Imaging, 2019, 63, 159-169.	1.8	29
20	Freeâ€running 3D whole heart myocardial T 1 mapping with isotropic spatial resolution. Magnetic Resonance in Medicine, 2019, 82, 1331-1342.	3.0	36
21	Plaque components segmentation in carotid artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning. Magnetic Resonance Imaging, 2019, 60, 93-100.	1.8	18
22	Complementary Roles of Dynamic Contrast-Enhanced MR Imaging and Postcontrast Vessel Wall Imaging in Detecting High-Risk Intracranial Aneurysms. American Journal of Neuroradiology, 2019, 40, 490-496.	2.4	18
23	Topics on quantitative liver magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1840-1890.	2.0	31
24	A Follow-up Study of Postoperative DCM Patients Using Diffusion MRI with DTI and NODDI. Spine, 2018, 43, E898-E904.	2.0	12
25	Large coverage blackâ€bright blood interleaved imaging sequence (LaBBI) for 3D dynamic contrastâ€enhanced MRI of vessel wall. Magnetic Resonance in Medicine, 2018, 79, 1334-1344.	3.0	3
26	Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (<scp>SAHA</scp>) for dynamic contrastâ€enhanced <scp>MRI</scp> of liver. Magnetic Resonance in Medicine, 2018, 79, 2629-2641.	3.0	3
27	Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience. Radiology, 2018, 287, 276-284.	7.3	34
28	Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver <scp>DCE </scp> â€≺scp>MRI . Magnetic Resonance in Medicine, 2018, 79, 3093-3102.	3.0	7
29	Simultaneous T ₁ and T ₂ mapping of the carotid plaque (SIMPLE) with T ₂ and inversion recovery prepared 3D radial imaging. Magnetic Resonance in Medicine, 2018, 80, 2598-2608.	3.0	24
30	Hemodynamic assessments of venous pulsatile tinnitus using 4D-flow MRI. Neurology, 2018, 91, e586-e593.	1.1	40
31	Sequential combination of kâ€t principle component analysis (PCA) and partial parallel imaging: kâ€t PCA GROWL. Magnetic Resonance in Medicine, 2017, 77, 1058-1067.	3.0	1
32	Fast simultaneous noncontrast angiography and intraplaque hemorrhage (f <scp>SNAP</scp>) sequence for carotid artery imaging. Magnetic Resonance in Medicine, 2017, 77, 753-758.	3.0	12
33	Multiple Biomarkers in the Context of Conventional Risk Factors in Patients With Coronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 2769-2770.	2.8	8
34	Dynamic contrast-enhanced MR imaging of carotid vasa vasorum in relation to coronary and cerebrovascular events. Atherosclerosis, 2017, 263, 420-426.	0.8	16
35	Hepatic function imaging using dynamic Gdâ€EOBâ€DTPA enhanced MRI and pharmacokinetic modeling. Magnetic Resonance in Medicine, 2017, 78, 1488-1495.	3.0	11
36	Evaluation of basilar artery atherosclerotic plaque distribution by 3D MR vessel wall imaging. Journal of Magnetic Resonance Imaging, 2016, 44, 1592-1599.	3.4	15

#	Article	IF	CITATIONS
37	Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study. European Journal of Radiology, 2016, 85, 2030-2035.	2.6	19
38	Summary of clinical and laboratory data of study subjects with and without DCE-MRI plaque measurements in the AIM-HIGH clinical trial. Data in Brief, 2016, 6, 476-481.	1.0	1
39	Relationship between aneurysm wall enhancement and conventional risk factors in patients with unruptured intracranial aneurysms: A black-blood MRI study. Interventional Neuroradiology, 2016, 22, 501-505.	1.1	47
40	Longer duration of statin therapy is associated with decreased carotid plaque vascularity by magnetic resonance imaging. Atherosclerosis, 2016, 245, 74-81.	0.8	23
41	Analysis of Multicontrast Carotid Plaque MR Imaging. Neuroimaging Clinics of North America, 2016, 26, 13-28.	1.0	2
42	Homologous black-bright-blood and flexible interleaved imaging sequence (HOBBI) for dynamic contrast-enhanced MRI of the vessel wall. Magnetic Resonance in Medicine, 2015, 73, 1754-1763.	3.0	8
43	Associations of arterial distensibility between carotid arteries and abdominal aorta by MR. Journal of Magnetic Resonance Imaging, 2015, 41, 1138-1142.	3.4	7
44	Bi-content micro-collagen chip provides contractility-based biomechanical readout for phenotypic drug screening with expanded and profiled targets. Lab on A Chip, 2015, 15, 3481-3494.	6.0	13
45	Varying Correlation Between ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography and Dynamic Contrast-Enhanced MRI in Carotid Atherosclerosis. Stroke, 2014, 45, 1842-1845.	2.0	27
46	Referenceless Acquisition of Phaseâ€sensitive Inversionâ€recovery with Decisive reconstruction (RAPID) imaging. Magnetic Resonance in Medicine, 2014, 72, 806-815.	3.0	5
47	Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 51.	3.3	26
48	Magnetically controllable 3D microtissues based on magnetic microcryogels. Lab on A Chip, 2014, 14, 2614-2625.	6.0	38
49	Progression of experimental lesions of atherosclerosis: Assessment by kinetic modeling of blackâ€blood dynamic contrastâ€enhanced MRI. Magnetic Resonance in Medicine, 2013, 69, 1712-1720.	3.0	28
50	A framework for the co-registration of hemodynamic forces and atherosclerotic plaque components. Physiological Measurement, 2013, 34, 977-990.	2.1	10
51	Adventitial Perfusion and Intraplaque Hemorrhage. Stroke, 2013, 44, 1031-1036.	2.0	45
52	Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI. Quantitative Imaging in Medicine and Surgery, 2013, 3, 298-301.	2.0	14
53	Segmentation of carotid plaque using multicontrast 3D gradient echo MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 812-819.	3.4	25
54	Magnetic Resonance Imaging of Atherosclerosis. , 2012, , 1-50.		0

Huijun Chen

#	Article	IF	CITATION
55	Extended graphical model for analysis of dynamic contrastâ€enhanced MRI. Magnetic Resonance in Medicine, 2011, 66, 868-878.	3.0	20
56	Carotid Artery Atherosclerosis: Effect of Intensive Lipid Therapy on the Vasa Vasorum—Evaluation by Using Dynamic Contrast-enhanced MR Imaging. Radiology, 2011, 260, 224-231.	7.3	77
57	Localized measurement of atherosclerotic plaque inflammatory burden with dynamic contrast–enhanced MRI. Magnetic Resonance in Medicine, 2010, 64, 567-573.	3.0	23
58	Color structured light system of chest wall motion measurement for respiratory volume evaluation. Journal of Biomedical Optics, 2010, 15, 026013.	2.6	13
59	Cardiovascular magnetic resonance in carotid atherosclerotic disease. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 53.	3.3	27
60	Cardiac Magnetic Resonance Features of the Disruption-Prone and the Disrupted Carotid Plaque. JACC: Cardiovascular Imaging, 2009, 2, 883-896.	5. 3	44
61	Current Techniques for MR Imaging of Atherosclerosis. Topics in Magnetic Resonance Imaging, 2009, 20, 203-215.	1.2	23
62	Dynamic Contrast-Enhanced Magnetic Resonance Images of the Kidney. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 36-41.	0.8	5
63	Surface height retrieval based on fringe shifting of color-encoded structured light pattern. Optics Letters, 2008, 33, 1801.	3.3	16
64	3-D shape measurement by composite pattern projection and hybrid processing. Optics Express, 2007, 15, 12318.	3.4	52
65	Incremental deformation analysis of shell and corrugated diaphragm based on arbitrary configuration. Acta Mechanica Sinica/Lixue Xuebao, 2005, 21, 592-600.	3.4	0