Todd J Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735486/publications.pdf

Version: 2024-02-01

279798 265206 1,931 42 48 23 h-index citations g-index papers 52 52 52 2017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GDP polyribonucleotidyltransferase domain of vesicular stomatitis virus polymerase regulates leader-promoter escape and polyadenylation-coupled termination during stop-start transcription. PLoS Pathogens, 2022, 18, e1010287.	4.7	2
2	Atomic view of the HIV-1 matrix lattice; implications on virus assembly and envelope incorporation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	10
3	Cytokines and Production of Aberrantly <i>O</i> -Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. Journal of Interferon and Cytokine Research, 2022, 42, 301-315.	1.2	4
4	Structure of Nonstructural Protein 1 from SARS-CoV-2. Journal of Virology, 2021, 95, .	3.4	67
5	Catalysis of mRNA Capping with GDP Polyribonucleotidyltransferase Activity of Rabies Virus L Protein. , 2021, , 459-474.		О
6	Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation. Journal of Biological Chemistry, 2021, 296, 100321.	3.4	5
7	Consequences of Phosphorylation in a <i>Mononegavirales</i> Polymerase-Cofactor System. Journal of Virology, 2021, 95, .	3.4	3
8	NAP1L1 and NAP1L4 Binding to Hypervariable Domain of Chikungunya Virus nsP3 Protein Is Bivalent and Requires Phosphorylation. Journal of Virology, 2021, 95, e0083621.	3.4	11
9	Natural and Recombinant SARS-CoV-2 Isolates Rapidly Evolve <i>In Vitro </i> to Higher Infectivity through More Efficient Binding to Heparan Sulfate and Reduced S1/S2 Cleavage. Journal of Virology, 2021, 95, e0135721.	3.4	25
10	Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines, 2021, 9, 881.	4.4	86
11	Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. Journal of Clinical Medicine, 2021, 10, 4501.	2.4	30
12	The Connector Domain of Vesicular Stomatitis Virus Large Protein Interacts with the Viral Phosphoprotein. Journal of Virology, 2020, 94, .	3.4	9
13	<scp><i>Chlamydia trachomatis</i></scp> glyceraldehyde 3â€phosphate dehydrogenase: Enzyme kinetics, highâ€resolution crystal structure, and plasminogen binding. Protein Science, 2020, 29, 2446-2458.	7.6	5
14	RNA Synthesis and Capping by Non-segmented Negative Strand RNA Viral Polymerases: Lessons From a Prototypic Virus. Frontiers in Microbiology, 2019, 10, 1490.	3.5	56
15	Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses, 2019, 11, 504.	3.3	17
16	The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Frontiers in Immunology, 2019, 10, 504.	4.8	100
17	A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal <i>de novo</i> i>initiation and capping intermediate formation. Nucleic Acids Research, 2019, 47, 299-309.	14.5	38
18	Defining HIV-1 Envelope N-Glycan Microdomains through Site-Specific Heterogeneity Profiles. Journal of Virology, 2019, 93, .	3.4	15

#	Article	IF	CITATIONS
19	Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased <i>In Vivo</i> Polyphosphate Levels. Journal of Bacteriology, 2018, 200, .	2.2	37
20	Structural analyses reveal the mechanism of inhibition of influenza virus NS1 by two antiviral compounds. Journal of Biological Chemistry, 2018, 293, 14659-14668.	3.4	20
21	Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes. PLoS ONE, 2016, 11, e0165917.	2.5	14
22	Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme–pRNA intermediate formation. Nucleic Acids Research, 2016, 44, 330-341.	14.5	36
23	Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase. Journal of Virology, 2016, 90, 715-724.	3.4	13
24	1.55â€Ã resolution X-ray crystal structure of Rv3902c fromMycobacterium tuberculosis. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 414-417.	0.8	1
25	Common Mechanism for RNA Encapsidation by Negative-Strand RNA Viruses. Journal of Virology, 2014, 88, 3766-3775.	3.4	37
26	Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Research, 2013, 41, 5912-5926.	14.5	69
27	Structural and Functional Characterization of the Mumps Virus Phosphoprotein. Journal of Virology, 2013, 87, 7558-7568.	3.4	52
28	Assembly of Vesicular Stomatitis Virus. , 2011, , 175-191.		1
29	Access to RNA Encapsidated in the Nucleocapsid of Vesicular Stomatitis Virus. Journal of Virology, 2011, 85, 2714-2722.	3.4	44
30	Structure of Human Stabilin-1 Interacting Chitinase-like Protein (SI-CLP) Reveals a Saccharide-binding Cleft with Lower Sugar-binding Selectivity. Journal of Biological Chemistry, 2010, 285, 39898-39904.	3.4	37
31			
	Cryo-EM Model of the Bullet-Shaped Vesicular Stomatitis Virus. Science, 2010, 327, 689-693.	12.6	205
32	Cryo-EM Model of the Bullet-Shaped Vesicular Stomatitis Virus. Science, 2010, 327, 689-693. Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11713-11718.	12.6 7.1	205
	Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proceedings of the National Academy of Sciences of the		
32	Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11713-11718. Characterization of a Mumps Virus Nucleocapsidlike Particle. Journal of Virology, 2009, 83,	7.1	107
32	Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11713-11718. Characterization of a Mumps Virus Nucleocapsidlike Particle. Journal of Virology, 2009, 83, 11402-11406. Crystallization and Preliminary X-Ray Crystallographic Studies on SICLP, a Novel Human Glyco_18	7.1 3.4	107

#	Article	IF	CITATION
37	Conserved characteristics of the rhabdovirus nucleoprotein. Virus Research, 2007, 129, 246-251.	2.2	51
38	Structural comparisons of the nucleoprotein from three negative strand RNA virus families. Virology Journal, 2007, 4, 72.	3.4	33
39	Resolution improvement of X-ray diffraction data of crystals of a vesicular stomatitis virus nucleocapsid protein oligomer complexed with RNA. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 498-504.	2.5	15
40	Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 361-364.	0.7	9
41	Structure of the Vesicular Stomatitis Virus Nucleoprotein-RNA Complex. Science, 2006, 313, 357-360.	12.6	302
42	Crystal Structure of the Oligomerization Domain of the Phosphoprotein of Vesicular Stomatitis Virus. Journal of Virology, 2006, 80, 2808-2814.	3.4	93
43	Visualizing the RNA Molecule in the Bacterially Expressed Vesicular Stomatitis Virus Nucleoprotein-RNA Complex. Structure, 2004, 12, 227-235.	3.3	18
44	Crystallization and preliminary X-ray analysis of a proteinase-K-resistant domain within the phosphoprotein of vesicular stomatitis virus (Indiana). Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2087-2090.	2.5	20
45	Expression, purification, crystallization of fragments from the C-terminal region of DFF45/ICAD. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1323-1326.	2.5	2
46	Study of the Assembly of Vesicular Stomatitis Virus N Protein: Role of the P Protein. Journal of Virology, 2000, 74, 9515-9524.	3.4	81
47	An Antibacterial Vitamin E Derivative from <i>Tovomitopsis psychotriifolia</i> . Planta Medica, 1995, 61, 275-276.	1.3	18
48	A Cytotoxic Diacetylene fromDendropanax arboreus, Planta Medica, 1995, 61, 470-471.	1.3	94