
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 2016, 13, 361-378.	5.4	865
2	A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 2017, 151, 147-160.	5.0	637
3	A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 2015, 52, 394-403.	6.3	582
4	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	8.0	494
5	Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 2020, 207, 103225.	9.1	470
6	Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 2017, 149, 52-63.	5.0	467
7	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	4.5	416
8	Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 2019, 662, 332-346.	8.0	378
9	A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling and Software, 2016, 84, 240-250.	4.5	377
10	Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and NaÃ ⁻ ve Bayes Models. Mathematical Problems in Engineering, 2012, 2012, 1-26.	1.1	369
11	Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 2018, 163, 399-413.	5.0	367
12	Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 2015, 133, 266-281.	5.0	349
13	Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 2012, 96, 28-40.	5.0	330
14	Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, 2012, 45, 199-211.	4.2	310
15	Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 2011, 59, 1413-1444.	3.4	297
16	Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 2020, 17, 641-658.	5.4	294
17	A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 2017, 233, 32-44.	4.8	287
18	Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 2016, 540, 317-330.	5.4	275

#	Article	IF	CITATIONS
19	Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naÃ ⁻ ve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 2017, 128, 255-273.	2.8	264
20	Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 2020, 188, 104426.	5.0	249
21	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	5.0	229
22	A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of the Total Environment, 2020, 701, 134413.	8.0	216
23	GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 2016, 75, 1.	2.7	215
24	A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena, 2019, 179, 184-196.	5.0	214
25	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	2.7	211
26	Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 2017, 14, 447-458.	5.4	207
27	GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 2018, 164, 135-149.	5.0	207
28	Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of the Total Environment, 2020, 721, 137612.	8.0	202
29	Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 2019, 175, 430-445.	5.0	199
30	Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 2019, 668, 1038-1054.	8.0	195
31	Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees. Geomorphology, 2018, 303, 256-270.	2.6	180
32	New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water (Switzerland), 2018, 10, 1210.	2.7	174
33	Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sensing, 2018, 10, 172.	4.0	174
34	Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. PLoS ONE, 2015, 10, e0133262.	2.5	167
35	Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology, 2012, 171-172, 12-29.	2.6	166
36	A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 2865-2886.	3.5	163

#	Article	IF	CITATIONS
37	Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Science of the Total Environment, 2019, 688, 855-866.	8.0	155
38	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	8.0	151
39	Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network. Natural Resources Research, 2020, 29, 691-709.	4.7	148
40	Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 2019, 11, 230.	4.0	147
41	Prediction of shear strength of soft soil using machine learning methods. Catena, 2018, 166, 181-191.	5.0	146
42	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	3.8	146
43	A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena, 2019, 173, 302-311.	5.0	143
44	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	2.1	136
45	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	3.5	131
46	A Novel Ensemble Approach for Landslide Susceptibility Mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sensing, 2019, 11, 2866.	4.0	130
47	Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 2018, 565, 248-261.	5.4	129
48	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	2.5	129
49	Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 2019, 679, 172-184.	8.0	128
50	Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment, 2021, 750, 141565.	8.0	126
51	Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports, 2018, 8, 15364.	3.3	124
52	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	4.0	124
53	Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 2019, 11, 638.	4.0	124
54	Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards, 2013, 66, 707-730.	3.4	122

#	Article	IF	CITATIONS
55	Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 2018, 22, 4771-4792.	4.9	122
56	Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 2019, 78, 247-266.	3.5	122
57	Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sensing, 2016, 8, 347.	4.0	121
58	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	4.0	121
59	Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 2020, 12, 475.	4.0	121
60	Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 2018, 18, 2464.	3.8	120
61	A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology, 2019, 137, 637-653.	2.8	119
62	Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam. International Journal of Digital Earth, 2016, 9, 1077-1097.	3.9	117
63	Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network. Advanced Engineering Informatics, 2018, 38, 593-604.	8.0	117
64	Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Natural Hazards, 2016, 83, 97-127.	3.4	116
65	Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost. Natural Resources Research, 2020, 29, 711-721.	4.7	116
66	A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 2020, 35, 1267-1292.	3.5	114
67	Harris Hawks Optimization: A Novel Swarm Intelligence Technique for Spatial Assessment of Landslide Susceptibility. Sensors, 2019, 19, 3590.	3.8	111
68	A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area. Geotechnical and Geological Engineering, 2016, 34, 1807-1824.	1.7	110
69	Hybrid computational intelligence models for groundwater potential mapping. Catena, 2019, 182, 104101.	5.0	110
70	A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sensing, 2019, 11, 62.	4.0	110
71	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	5.0	107
72	Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 0, , 1-16.	3.5	105

#	Article	IF	CITATIONS
73	A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 2017, 76, 1.	2.7	105
74	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	3.5	105
75	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	5.0	104
76	Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 2016, 75, 1.	2.7	103
77	A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides, 2017, 14, 1-17.	5.4	103
78	Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Science of the Total Environment, 2020, 699, 134230.	8.0	103
79	Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. Journal of Environmental Management, 2020, 260, 109867.	7.8	103
80	Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study. Geotechnical and Geological Engineering, 2017, 35, 2597-2611.	1.7	101
81	A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors, 2018, 18, 3704.	3.8	101
82	Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Science of the Total Environment, 2020, 712, 136492.	8.0	101
83	Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 2017, 8, 544-569.	4.3	100
84	Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Science of the Total Environment, 2019, 691, 1098-1118.	8.0	99
85	Land subsidence modelling using tree-based machine learning algorithms. Science of the Total Environment, 2019, 672, 239-252.	8.0	99
86	Landslide Susceptibility Assessment at Mila Basin (Algeria): A Comparative Assessment of Prediction Capability of Advanced Machine Learning Methods. ISPRS International Journal of Geo-Information, 2018, 7, 268.	2.9	98
87	Bagging based Support Vector Machines for spatial prediction of landslides. Environmental Earth Sciences, 2018, 77, 1.	2.7	97
88	A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering With Computers, 2020, 36, 713-723.	6.1	97
89	Comparison of machine learning models for gully erosion susceptibility mapping. Geoscience Frontiers, 2020, 11, 1609-1620.	8.4	96
90	Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. Catena, 2020, 188, 104458.	5.0	96

#	Article	IF	CITATIONS
91	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	8.4	95
92	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	3.4	94
93	A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors, 2019, 19, 1933.	3.8	93
94	Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Science of the Total Environment, 2019, 688, 903-916.	8.0	91
95	Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bulletin of Engineering Geology and the Environment, 2018, 77, 191-204.	3.5	90
96	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	4.0	90
97	Image Processing–Based Classification of Asphalt Pavement Cracks Using Support Vector Machine Optimized by Artificial Bee Colony. Journal of Computing in Civil Engineering, 2018, 32, .	4.7	89
98	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	2.1	89
99	Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 2020, 590, 125423.	5.4	89
100	A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 2019, 34, 1385-1407.	3.5	88
101	Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology, 2020, 587, 125007.	5.4	88
102	Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Journal of Environmental Management, 2019, 237, 476-487.	7.8	87
103	Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 2020, 591, 125552.	5.4	87
104	A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk, 2015, 6, 243-271.	4.3	86
105	A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Computing and Applications, 2018, 29, 1495-1506.	5.6	86
106	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	3.8	86
107	Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sensing, 2019, 11, 128.	4.0	86
108	Enhancing Prediction Performance of Landslide Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic Model Tree. Applied Sciences (Switzerland), 2018, 8, 1046.	2.5	85

#	Article	IF	CITATIONS
109	A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial NaÃ⁻ve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water (Switzerland), 2020, 12, 239.	2.7	85
110	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	4.0	84
111	PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Science of the Total Environment, 2019, 664, 296-311.	8.0	84
112	A novel ensemble classifier of rotation forest and NaÃ ⁻ ve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Natural Hazards and Risk, 2017, 8, 649-671.	4.3	81
113	The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena, 2020, 187, 104421.	5.0	81
114	A new intelligence approach based on GIS-based Multivariate Adaptive Regression Splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. Journal of Hydrology, 2019, 575, 314-326.	5.4	76
115	Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology, 2020, 585, 124808.	5.4	75
116	The Feasibility of Three Prediction Techniques of the Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, and Hybrid Particle Swarm Optimization for Assessing the Safety Factor of Cohesive Slopes. ISPRS International Journal of Geo-Information, 2019, 8, 391.	2.9	73
117	A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environmental Earth Sciences, 2017, 76, 1.	2.7	72
118	Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO. Natural Resources Research, 2020, 29, 739-750.	4.7	72
119	Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India. Sensors, 2020, 20, 1313.	3.8	71
120	A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 2020, 13, 1408-1429.	3.9	70
121	Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Journal of the Indian Society of Remote Sensing, 2018, 46, 1457-1470.	2.4	69
122	Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of Environmental Management, 2019, 243, 358-369.	7.8	69
123	Development of novel hybridized models for urban flood susceptibility mapping. Scientific Reports, 2020, 10, 12937.	3.3	68
124	Groutability estimation of grouting processes with cement grouts using Differential Flower Pollination Optimized Support Vector Machine. Applied Soft Computing Journal, 2016, 45, 173-186.	7.2	67
125	Inferring air pollution from air quality index by different geographical areas: case study in India. Air Quality, Atmosphere and Health, 2019, 12, 1347-1357.	3.3	67
126	Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Engineering With Computers, 2020, 36, 671-687.	6.1	65

#	Article	IF	CITATIONS
127	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	2.7	64
128	GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecological Informatics, 2018, 48, 104-116.	5.2	63
129	Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. International Journal of Remote Sensing, 2018, 39, 7761-7788.	2.9	62
130	A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 2019, 78, 1.	2.7	60
131	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	8.4	60
132	Biomass estimation of <i>Sonneratia caseolaris</i> (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GIScience and Remote Sensing, 2017, 54, 329-353.	5.9	58
133	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	2.5	58
134	Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 2020, 715, 136836.	8.0	58
135	Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-Based Ensemble Model. Remote Sensing, 2020, 12, 874.	4.0	58
136	A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKdaÂV1.1) for spatial prediction of floods. Geoscientific Model Development, 2017, 10, 3391-3409.	3.6	57
137	Multi-Hazard Exposure Mapping Using Machine Learning Techniques: A Case Study from Iran. Remote Sensing, 2019, 11, 1943.	4.0	56
138	Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences (Switzerland), 2019, 9, 4715.	2.5	55
139	Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 2020, 585, 124774.	5.4	55
140	Landslide susceptibility modelling using different advanced decision trees methods. Civil Engineering and Environmental Systems, 2018, 35, 139-157.	0.9	54
141	Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107389.	5.0	54
142	A Novel GIS-Based Random Forest Machine Algorithm for the Spatial Prediction of Shallow Landslide Susceptibility. Forests, 2020, 11, 118.	2.1	54
143	GIS-Based Site Selection for Check Dams in Watersheds: Considering Geomorphometric and Topo-Hydrological Factors. Sustainability, 2019, 11, 5639.	3.2	53
144	A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Engineering With Computers, 2019, 35, 955-965.	6.1	53

#	Article	IF	CITATIONS
145	Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet) Tj ETQq1 1	0.78 243 14 r	gB Ђ ⊉Overloc
146	Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing, 2019, 11, 618.	4.0	52
147	Novel Machine Learning Approaches for Modelling the Gully Erosion Susceptibility. Remote Sensing, 2020, 12, 2833.	4.0	52
148	Crime rate detection using social media of different crime locations and Twitter part-of-speech tagger with Brown clustering. Journal of Intelligent and Fuzzy Systems, 2020, 38, 4287-4299.	1.4	52
149	Novel Ensembles of Deep Learning Neural Network and Statistical Learning for Flash-Flood Susceptibility Mapping. Water (Switzerland), 2020, 12, 1549.	2.7	51
150	A Novel Relevance Vector Machine Classifier with Cuckoo Search Optimization for Spatial Prediction of Landslides. Journal of Computing in Civil Engineering, 2016, 30, .	4.7	50
151	Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-arid Regions (Iran). Remote Sensing, 2019, 11, 2577.	4.0	49
152	Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran. Remote Sensing, 2019, 11, 3015.	4.0	46
153	A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam). Engineering With Computers, 2020, 36, 603-616.	6.1	46
154	New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrological Sciences Journal, 2020, 65, 2816-2837.	2.6	46
155	A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sensing, 2020, 12, 2688.	4.0	46
156	Spatial Modeling of Snow Avalanche Using Machine Learning Models and Geo-Environmental Factors: Comparison of Effectiveness in Two Mountain Regions. Remote Sensing, 2019, 11, 2995.	4.0	44
157	Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 2016, 75, 1.	2.7	43
158	The feasibility of Levenberg–Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines. Journal of Petroleum Science and Engineering, 2020, 185, 106634.	4.2	43
159	Soft-computing techniques for prediction of soils consolidation coefficient. Catena, 2020, 195, 104802.	5.0	43
160	Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete. Engineering With Computers, 2021, 37, 701-712.	6.1	43
161	Predicting Heating and Cooling Loads in Energy-Efficient Buildings Using Two Hybrid Intelligent Models. Applied Sciences (Switzerland), 2019, 9, 3543.	2.5	41
162	Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility. Remote Sensing, 2020, 12, 3389.	4.0	41

#	Article	IF	CITATIONS
163	Multi-hazards vulnerability assessment of southern coasts of Iran. Journal of Environmental Management, 2019, 252, 109628.	7.8	40
164	Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm. Engineering With Computers, 2020, 36, 1379-1391.	6.1	40
165	Systematic sample subdividing strategy for training landslide susceptibility models. Catena, 2020, 187, 104358.	5.0	40
166	Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment, 2020, 224, 117320.	4.1	39
167	Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Applied Soft Computing Journal, 2022, 116, 108254.	7.2	39
168	Urban Flood Hazard Modeling Using Self-Organizing Map Neural Network. Water (Switzerland), 2019, 11, 2370.	2.7	38
169	Spatial prediction of shallow landslide using Bat algorithm optimized machine learning approach: A case study in Lang Son Province, Vietnam. Advanced Engineering Informatics, 2019, 42, 100978.	8.0	37
170	A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability, 2019, 11, 6323.	3.2	37
171	Analysis of Outbreak and Global Impacts of the COVID-19. Healthcare (Switzerland), 2020, 8, 148.	2.0	37
172	Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. Lecture Notes in Geoinformation and Cartography, 2014, , 303-317.	1.0	35
173	Mapping wind erosion hazard with regression-based machine learning algorithms. Scientific Reports, 2020, 10, 20494.	3.3	35
174	Identifying sources of dust aerosol using a new framework based on remote sensing and modelling. Science of the Total Environment, 2020, 737, 139508.	8.0	35
175	First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Scientific Reports, 2021, 11, 9979.	3.3	34
176	Design and implementation of site-specific rainfall-induced landslide early warning and monitoring system: a case study at Nam Dan landslide (Vietnam). Geomatics, Natural Hazards and Risk, 2017, 8, 1978-1996.	4.3	33
177	Novel Ensemble of Multivariate Adaptive Regression Spline with Spatial Logistic Regression and Boosted Regression Tree for Gully Erosion Susceptibility. Remote Sensing, 2020, 12, 3284.	4.0	33
178	Hybrid Computational Intelligence Models for Improvement Gully Erosion Assessment. Remote Sensing, 2020, 12, 140.	4.0	33
179	Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study. Sensors, 2020, 20, 335.	3.8	33
180	A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. Journal of Hydrology, 2021, 596, 125682.	5.4	33

#	Article	IF	CITATIONS
181	Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region. Environmental Earth Sciences, 2018, 77, 1.	2.7	32
182	Willingness to pay for mangrove restoration in the context of climate change in the Cat Ba biosphere reserve, Vietnam. Ocean and Coastal Management, 2018, 163, 269-277.	4.4	32
183	Vulnerability of coastal communities to climate change: Thirty-year trend analysis and prospective prediction for the coastal regions of the Persian Gulf and Gulf of Oman. Science of the Total Environment, 2020, 741, 140305.	8.0	32
184	A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence. Geomorphology, 2020, 359, 107136.	2.6	32
185	A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeography Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 2020, 12, 1373.	4.0	32
186	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.7	32
187	Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength. Measurement: Journal of the International Measurement Confederation, 2020, 156, 107576.	5.0	31
188	A Comparative Assessment Between the Application of Fuzzy Unordered Rules Induction Algorithm and J48 Decision Tree Models in Spatial Prediction of Shallow Landslides at Lang Son City, Vietnam. Society of Earth Scientists Series, 2014, , 87-111.	0.3	30
189	A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS. Sustainability, 2017, 9, 813.	3.2	30
190	Coastal Wetland Classification with Deep U-Net Convolutional Networks and Sentinel-2 Imagery: A Case Study at the Tien Yen Estuary of Vietnam. Remote Sensing, 2020, 12, 3270.	4.0	30
191	Gully Head-Cut Distribution Modeling Using Machine Learning Methods—A Case Study of N.W. Iran. Water (Switzerland), 2020, 12, 16.	2.7	30
192	A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecological Informatics, 2021, 63, 101300.	5.2	30
193	Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Sensors, 2019, 19, 4698.	3.8	29
194	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	8.1	29
195	Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia. Science of the Total Environment, 2020, 718, 134656.	8.0	28
196	Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. Catena, 2020, 190, 104545.	5.0	28
197	Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam. Natural Hazards, 2018, 92, 1871-1887.	3.4	27
198	Predicting Heating Load in Energy-Efficient Buildings Through Machine Learning Techniques. Applied Sciences (Switzerland), 2019, 9, 4338.	2.5	27

#	Article	IF	CITATIONS
199	Novel Nature-Inspired Hybrids of Neural Computing for Estimating Soil Shear Strength. Applied Sciences (Switzerland), 2019, 9, 4643.	2.5	26
200	Spotted Hyena Optimizer and Ant Lion Optimization in Predicting the Shear Strength of Soil. Applied Sciences (Switzerland), 2019, 9, 4738.	2.5	26
201	Deformation forecasting of a hydropower dam by hybridizing a long shortâ€term memory deep learning network with the coronavirus optimization algorithm. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 1368-1386.	9.8	26
202	Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuarine, Coastal and Shelf Science, 2020, 237, 106644.	2.1	25
203	An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. Journal of Environmental Planning and Management, 2021, 64, 485-516.	4.5	25
204	Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure. Applied Sciences (Switzerland), 2019, 9, 4638.	2.5	24
205	Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms. Geocarto International, 2022, 37, 5150-5173.	3.5	24
206	Spatial Prediction of Landslide Hazard at the Yihuang Area (China): A Comparative Study on the Predictive Ability of Backpropagation Multi-layer Perceptron Neural Networks and Radial Basic Function Neural Networks. Lecture Notes in Geoinformation and Cartography, 2015, , 175-188.	1.0	22
207	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	3.2	22
208	Slope Stability Monitoring Using Novel Remote Sensing Based Fuzzy Logic. Sensors, 2019, 19, 4636.	3.8	21
209	An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping. Remote Sensing, 2019, 11, 1375.	4.0	20
210	Application of Three Metaheuristic Techniques in Simulation of Concrete Slump. Applied Sciences (Switzerland), 2019, 9, 4340.	2.5	19
211	Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin. Sustainability, 2020, 12, 338.	3.2	19
212	Spatial modeling of exposure of mangrove ecosystems to multiple environmental hazards. Science of the Total Environment, 2020, 740, 140167.	8.0	19
213	An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Engineering With Computers, 2022, 38, 2185-2207.	6.1	18
214	Neural Computing Improvement Using Four Metaheuristic Optimizers in Bearing Capacity Analysis of Footings Settled on Two-Layer Soils. Applied Sciences (Switzerland), 2019, 9, 5264.	2.5	17
215	Proposing two new metaheuristic algorithms of ALO-MLP and SHO-MLP inÂpredicting bearing capacity of circular footing located on horizontal multilayer soil. Engineering With Computers, 2021, 37, 1537-1547.	6.1	17
216	Prediction of Pullout Behavior of Belled Piles through Various Machine Learning Modelling Techniques. Sensors, 2019, 19, 3678.	3.8	16

#	Article	IF	CITATIONS
217	Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis. Geomatics, Natural Hazards and Risk, 2019, 10, 2429-2453.	4.3	16
218	Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood. Geocarto International, 2022, 37, 5716-5741.	3.5	16
219	A Semi-empirical Approach Based on Genetic Programming for the Study of Biophysical Controls on Diameter-Growth of Fagus orientalis in Northern Iran. Remote Sensing, 2019, 11, 1680.	4.0	15
220	A New Approach of Hybrid Bee Colony Optimized Neural Computing to Estimate the Soil Compression Coefficient for a Housing Construction Project. Applied Sciences (Switzerland), 2019, 9, 4912.	2.5	15
221	A new hybrid equilibrium optimized SysFor based geospatial data mining for tropical storm-induced flash flood susceptible mapping. Journal of Environmental Management, 2021, 280, 111858.	7.8	15
222	Reliability Analysis of Slope Safety Factor by Using GPR and GP. Geotechnical and Geological Engineering, 2019, 37, 2245-2254.	1.7	13
223	Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using CIS. Sustainable Development Goals Series, 2018, , 159-170.	0.4	12
224	Spatial assessment of landslide risk using two novel integrations of neuro-fuzzy system and metaheuristic approaches; Ardabil Province, Iran. Geomatics, Natural Hazards and Risk, 2020, 11, 230-258.	4.3	12
225	Advanced soft computing techniques for predicting soil compression coefficient in engineering project: a comparative study. Engineering With Computers, 2020, 36, 1405-1416.	6.1	11
226	Hybrid Intelligent Model Based on Least Squares Support Vector Regression and Artificial Bee Colony Optimization for Time-Series Modeling and Forecasting Horizontal Displacement of Hydropower Dam. , 2017, , 279-293.		10
227	Shuffled Frog Leaping Algorithm and Wind-Driven Optimization Technique Modified with Multilayer Perceptron. Applied Sciences (Switzerland), 2020, 10, 689.	2.5	10
228	Assessment of Cini-, entropy- and ratio-based classification trees for groundwater potential modelling and prediction. Geocarto International, 2022, 37, 3397-3415.	3.5	10
229	A Novel Application of League Championship Optimization (LCA): Hybridizing Fuzzy Logic for Soil Compression Coefficient Analysis. Applied Sciences (Switzerland), 2020, 10, 67.	2.5	9
230	A Novel Hybrid Model of Rotation Forest Based Functional Trees for Landslide Susceptibility Mapping: A Case Study at Kon Tum Province, Vietnam. , 2018, , 186-201.		8
231	Development of Two Novel Hybrid Prediction Models Estimating Ultimate Bearing Capacity of the Shallow Circular Footing. Applied Sciences (Switzerland), 2019, 9, 4594.	2.5	8
232	Recent tectonics, geodynamics and seismotectonics in the Ninh Thuan Nuclear Power plants and surrounding regions, South Vietnam. Journal of Asian Earth Sciences, 2020, 187, 104080.	2.3	8
233	A New Integrated Approach Based on the Iterative Super-Resolution Algorithm and Expectation Maximization for Face Hallucination. Applied Sciences (Switzerland), 2020, 10, 718.	2.5	8
234	iGeoTrans – a novel iOS application for GPS positioning in geosciences. Geocarto International, 2014, , 1-16.	3.5	7

#	Article	IF	CITATIONS
235	GIS-Based Mapping of Seismic Parameters for the Pyrenees. ISPRS International Journal of Geo-Information, 2020, 9, 452.	2.9	7
236	Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management. Remote Sensing, 2020, 12, 301.	4.0	7
237	Thirty-Year Dynamics of LULC at the Dong Thap Muoi Area, Southern Vietnam, Using Google Earth Engine. ISPRS International Journal of Geo-Information, 2021, 10, 226.	2.9	5
238	Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework. Water (Switzerland), 2022, 14, 300.	2.7	5
239	Assessing cohesion of the rocks proposing a new intelligent technique namely group method of data handling. Engineering With Computers, 2020, 36, 783-793.	6.1	3
240	GIS-Based Landslide Spatial Modeling Using Batch-Training Back-propagation Artificial Neural Network: A Study of Model Parameters. , 2018, , 239-254.		2
241	Reducing the impacts of intra-class spectral variability on the accuracy of soft classification and super-resolution mapping of shoreline. International Journal of Remote Sensing, 2019, 40, 3384-3400.	2.9	1
242	An approach based on socio-politically optimized neural computing network for predicting shallow landslide susceptibility at tropical areas. Environmental Earth Sciences, 2021, 80, 1.	2.7	1
243	Comparing the Soil Conservation Service model with new machine learning algorithms for predicting cumulative infiltration in semi-arid regions. Pedosphere, 2022, 32, 718-732.	4.0	1
244	Assessment of the TREELIM model in predicting present treeline along a longitudinal continentality-maritimity gradient in south-western Norway. Geografiska Annaler, Series A: Physical Geography, 0, , 1-19.	1.5	0