Steven A Kliewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77351/publications.pdf Version: 2024-02-01

STEVEN & KLIEWED

#	Article	IF	CITATIONS
1	Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 1992, 358, 771-774.	27.8	1,678
2	A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis. Molecular Cell, 2000, 6, 517-526.	9.7	1,646
3	Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metabolism, 2005, 2, 217-225.	16.2	1,514
4	Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21. Cell Metabolism, 2007, 5, 415-425.	16.2	1,306
5	Tissue-specific Expression of Î ² Klotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. Journal of Biological Chemistry, 2007, 282, 26687-26695.	3.4	654
6	FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10853-10858.	7.1	605
7	Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes and Development, 2003, 17, 1581-1591.	5.9	586
8	Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse. Molecular Endocrinology, 2010, 24, 2050-2064.	3.7	579
9	FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science, 2011, 331, 1621-1624.	12.6	504
10	Fibroblast Growth Factor-21 Regulates PPARÎ ³ Activity and the Antidiabetic Actions of Thiazolidinediones. Cell, 2012, 148, 556-567.	28.9	478
11	Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding. Diabetes, 2014, 63, 4057-4063.	0.6	467
12	Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Molecular and Cellular Biology, 2007, 27, 3417-3428.	2.3	457
13	FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nature Medicine, 2013, 19, 1147-1152.	30.7	430
14	FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss. Cell Metabolism, 2014, 20, 670-677.	16.2	403
15	Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes and Development, 2012, 26, 312-324.	5.9	367
16	Inhibition of Growth Hormone Signaling by the Fasting-Induced Hormone FGF21. Cell Metabolism, 2008, 8, 77-83.	16.2	353
17	βKlotho Is Required for Fibroblast Growth Factor 21 Effects on Growth and Metabolism. Cell Metabolism, 2012, 16, 387-393.	16.2	338
18	FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 2011, 13, 729-738.	16.2	331

STEVEN A KLIEWER

#	Article	IF	CITATIONS
19	Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3143-3148.	7.1	331
20	The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. ELife, 2012, 1, e00065.	6.0	322
21	Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Digestive Diseases, 2015, 33, 327-331.	1.9	299
22	FGF21 Regulates Sweet and Alcohol Preference. Cell Metabolism, 2016, 23, 344-349.	16.2	259
23	Identification of a hormonal basis for gallbladder filling. Nature Medicine, 2006, 12, 1253-1255.	30.7	257
24	Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends in Endocrinology and Metabolism, 2015, 26, 22-29.	7.1	248
25	<i>KLB</i> is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14372-14377.	7.1	208
26	FGF21 contributes to neuroendocrine control of female reproduction. Nature Medicine, 2013, 19, 1153-1156.	30.7	193
27	FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. Cell Metabolism, 2017, 26, 709-718.e3.	16.2	184
28	Regulation of Bile Acid Synthesis by Fat-soluble Vitamins A and D. Journal of Biological Chemistry, 2010, 285, 14486-14494.	3.4	180
29	A Dozen Years of Discovery: Insights into the Physiology and Pharmacology of FGF21. Cell Metabolism, 2019, 29, 246-253.	16.2	180
30	Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. Journal of Clinical Investigation, 2012, 122, 1688-1699.	8.2	166
31	Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9138-9143.	7.1	117
32	Nuclear Receptors HNF4α and LRH-1 Cooperate in Regulating Cyp7a1 in Vivo. Journal of Biological Chemistry, 2012, 287, 41334-41341.	3.4	112
33	FGF21 Is an Exocrine Pancreas Secretagogue. Cell Metabolism, 2017, 25, 472-480.	16.2	92
34	LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes and Development, 2011, 25, 1674-1679.	5.9	91
35	Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1026-1031.	7.1	91
36	Glucocorticoids Regulate the Metabolic Hormone FGF21 in a Feed-Forward Loop. Molecular Endocrinology, 2015, 29, 213-223.	3.7	78

STEVEN A KLIEWER

#	Article	IF	CITATIONS
37	The Hormone FGF21 Stimulates Water Drinking in Response to Ketogenic Diet and Alcohol. Cell Metabolism, 2018, 27, 1338-1347.e4.	16.2	72
38	FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Reports, 2021, 35, 109331.	6.4	55
39	Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathogens, 2016, 12, e1005358.	4.7	53
40	Detection of FGF15 in Plasma by Stable Isotope Standards and Capture by Anti-peptide Antibodies and Targeted Mass Spectrometry. Cell Metabolism, 2015, 21, 898-904.	16.2	51
41	Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses, <i>Strongyloides stercoralis</i> hyperinfection in NSG mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 204-209.	7.1	47
42	The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes. PLoS Genetics, 2015, 11, e1005027.	3.5	41
43	Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. Science Translational Medicine, 2020, 12, .	12.4	29
44	PPARÎ ³ -K107 SUMOylation regulates insulin sensitivity but not adiposity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12102-12111.	7.1	27
45	Cholesterol detoxification by the nuclear pregnane X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2675-2676.	7.1	20
46	Nuclear receptors: emerging drug targets for parasitic diseases. Journal of Clinical Investigation, 2017, 127, 1165-1171.	8.2	20
47	SnapShot: Hormones of the Gastrointestinal Tract. Cell, 2014, 159, 1478-1478.e1.	28.9	15
48	Identification of a nuclear receptor/coactivator developmental signaling pathway in the nematode parasite <i>Strongyloides stercoralis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
49	The orphan nuclear receptor SHP regulates ER stress response by inhibiting XBP1s degradation. Genes and Development, 2019, 33, 1083-1094.	5.9	14
50	Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells. Molecular Endocrinology, 2016, 30, 469-478.	3.7	13
51	Characterization of the endogenous DAF-12 ligand and its use as an anthelmintic agent in Strongyloides stercoralis. ELife, 2021, 10, .	6.0	11
52	Dafachronic acid and temperature regulate canonical dauer pathways during Nippostrongylus brasiliensis infectious larvae activation. Parasites and Vectors, 2020, 13, 162.	2.5	10
53	Pregnane X receptor: Predicting and preventing drug interactions. Thrombosis Research, 2005, 117, 133-136.	1.7	6
54	TheÂSchistosoma mansoniÂnuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation ofÂmeg-8.3. PLoS Pathogens, 2021, 17, e1010140.	4.7	6

#	Article	IF	CITATIONS
55	The â€~nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Molecular and Biochemical Parasitology, 2022, 250, 111490.	1.1	4