
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Diversity, 2021, 109, 27-55.	12.3	37
2	Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
3	Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts. FEMS Yeast Research, 2021, , .	2.3	4
4	Integrative Omics Analysis Reveals a Limited Transcriptional Shock After Yeast Interspecies Hybridization. Frontiers in Genetics, 2020, 11, 404.	2.3	22
5	A47â€Quantitative trait locus analysis in yeast: identifying candidate therapeutic targets for huntington's disease. , 2018, , .		0
6	PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media. BMC Microbiology, 2018, 18, 9.	3.3	17
7	Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics, 2017, 206, 717-750.	2.9	105
8	Meeting Report: Minutes from EMBO: Ten Years of Comparative Genomics of Eukaryotic Microorganisms. Protist, 2016, 167, 217-221.	1.5	0
9	Rif1 and Exo1 regulate the genomic instability following telomere losses. Aging Cell, 2016, 15, 553-562.	6.7	13
10	Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics, 2016, 203, 1659-1668.	2.9	8
11	An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, e41-e41.	14.5	14
12	Historical Evolution of Laboratory Strains of <i>Saccharomyces cerevisiae</i> . Cold Spring Harbor Protocols, 2016, 2016, pdb.top077750.	0.3	7
13	A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology. Journal of Microbiology and Biotechnology, 2016, 26, 1891-1907.	2.1	28
14	Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation. PLoS ONE, 2015, 10, e0135626.	2.5	12
15	The Genetic Basis of Variation in Clean Lineages of Saccharomyces cerevisiae in Response to Stresses Encountered during Bioethanol Fermentations. PLoS ONE, 2014, 9, e103233.	2.5	19
16	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	8.9	328
17	Deletion of the <i>Saccharomyces cerevisiae ARO8</i> gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast, 2014, 32, n/a-n/a.	1.7	35
18	Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microbial Cell Factories, 2014, 13, 47.	4.0	68

#	Article	IF	CITATIONS
19	Genomics of Subtelomeres: Technical Problems, Solutions and the Future. , 2014, , 259-271.		1
20	High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics, 2013, 14, 69.	2.8	87
21	Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response. DNA Repair, 2013, 12, 993-999.	2.8	4
22	High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population. Genetics, 2013, 195, 1141-1155.	2.9	164
23	Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression. PLoS Genetics, 2013, 9, e1003366.	3.5	102
24	Advances in Quantitative Trait Analysis in Yeast. PLoS Genetics, 2012, 8, e1002912.	3.5	167
25	Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4209-4214.	7.1	90
26	Life History Shapes Trait Heredity by Accumulation of Loss-of-Function Alleles in Yeast. Molecular Biology and Evolution, 2012, 29, 1781-1789.	8.9	76
27	New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends in Genetics, 2012, 28, 480-486.	6.7	52
28	Apparent Ploidy Effects on Silencing Are Post-Transcriptional at HML and Telomeres in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e39044.	2.5	3
29	The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e49640.	2.5	107
30	Population genomics and speciation in yeasts. Fungal Biology Reviews, 2011, 25, 136-142.	4.7	26
31	Assessing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 2011, 20, 1401-1413.	3.9	194
32	Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.	5.5	263
33	Saccharomyces cerevisiae: Gene Annotation and Genome Variability, State of the Art Through Comparative Genomics. Methods in Molecular Biology, 2011, 759, 31-40.	0.9	7
34	Trait Variation in Yeast Is Defined by Population History. PLoS Genetics, 2011, 7, e1002111.	3.5	311
35	Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR). PLoS ONE, 2011, 6, e17782.	2.5	14
36	Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Research, 2010, 38, 4675-4686.	14.5	14

#	Article	IF	CITATIONS
37	In <i>Saccharomyces cerevisiae</i> , yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway. Genetics, 2009, 183, 441-451.	2.9	22
38	Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast. PLoS Genetics, 2009, 5, e1000659.	3.5	46
39	The Association of yKu With Subtelomeric Core X Sequences Prevents Recombination Involving Telomeric Sequences. Genetics, 2009, 183, 453-467.	2.9	28
40	Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. Epigenetics and Chromatin, 2009, 2, 18.	3.9	28
41	Population genomics of domestic and wild yeasts. Nature, 2009, 458, 337-341.	27.8	1,391
42	Origins of reproductive isolation. Nature, 2009, 457, 549-550.	27.8	15
43	Generation of a large set of genetically tractable haploid and diploid <i>Saccharomyces</i> strains. FEMS Yeast Research, 2009, 9, 1217-1225.	2.3	187
44	17-P036 How are the chromosome ends of immortal worms maintained?. Mechanisms of Development, 2009, 126, S281.	1.7	0
45	Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics, 2008, 9, 385.	2.8	39
46	Population genomics of domestic and wild yeasts. Nature Precedings, 2008, , .	0.1	1
47	Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei. PLoS ONE, 2008, 3, e3527.	2.5	254
48	Circadian Rhythm Gene Regulation in the Housefly Musca domestica. Genetics, 2007, 177, 1539-1551.	2.9	39
49	Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast, 2007, 24, 667-679.	1.7	103
50	Making the most of redundancy. Nature, 2007, 449, 673-674.	27.8	31
51	Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae. Chromosome Research, 2007, 15, 1033-50.	2.2	19
52	Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces. Genetics, 2006, 174, 839-850.	2.9	283
53	YEAST EVOLUTION AND COMPARATIVE GENOMICS. Annual Review of Microbiology, 2005, 59, 135-153.	7.3	113
54	Chromosome ends: different sequences may provide conserved functions. BioEssays, 2005, 27, 685-697.	2.5	58

#	Article	IF	CITATIONS
55	Monomorphic subtelomeric DNA in the filamentous fungus, Metarhizium anisopliae,contains a RecQ helicase-like gene. Molecular Genetics and Genomics, 2005, 274, 79-90.	2.1	19
56	Telomeres: a diversity of solutions to the problem of chromosome ends. Chromosome Research, 2005, 13, 425-429.	2.2	2
57	Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in theSaccharomyces sensu stricto complex. Yeast, 2005, 22, 177-192.	1.7	148
58	Mapping of a Major Locus that Determines Telomere Length in Humans. American Journal of Human Genetics, 2005, 76, 147-151.	6.2	243
59	Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Research, 2004, 14, 2319-2329.	5.5	63
60	Analysis of a Ty1-less variant ofSaccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast, 2004, 21, 649-660.	1.7	29
61	Developing methods and strains for genetic studies in theSaccharomyces bayanus var.uvarum species. Yeast, 2004, 21, 1195-1203.	1.7	13
62	Meiotic Recombination: Too Much of a Good Thing?. Current Biology, 2003, 13, R953-R955.	3.9	11
63	A role for the mismatch repair system during incipient speciation in Saccharomyces. Journal of Evolutionary Biology, 2003, 16, 429-437.	1.7	96
64	Engineering evolution to study speciation in yeasts. Nature, 2003, 422, 68-72.	27.8	232
65	NEJ1 Prevents NHEJ-Dependent Telomere Fusions in Yeast without Telomerase. Molecular Cell, 2003, 11, 1373-1378.	9.7	53
66	Hybrid Speciation in Experimental Populations of Yeast. Science, 2002, 298, 1773-1775.	12.6	155
67	Epistasis and hybrid sterility inSaccharomyces. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1167-1171.	2.6	95
68	Are Drosophila telomeres an exception or the rule?. Genome Biology, 2002, 3, reviews0007.1.	9.6	22
69	SGS1 is required for telomere elongation in the absence of telomerase. Current Biology, 2001, 11, 125-129.	3.9	178
70	Chromosomal evolution in Saccharomyces. Nature, 2000, 405, 451-454.	27.8	308
71	Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene, 2000, 252, 127-135.	2.2	120
72	Minisatellite Variants Generated in Yeast Meiosis Involve DNA Removal During Gene Conversion. Genetics, 2000, 156, 7-20.	2.9	18

#	Article	IF	CITATIONS
73	Limitations of silencing at native yeast telomeres. EMBO Journal, 1999, 18, 2538-2550.	7.8	266
74	The topoisomerase II-associated protein, Pat1p, is required for maintenance of rDNA locus stability in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1999, 261, 831-840.	2.4	15
75	Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Current Biology, 1998, 8, 653-657.	3.9	330
76	Minisatellite Origins in Yeast and Humans. Genomics, 1998, 48, 132-135.	2.9	38
77	The effect of sex on adaptation to high temperature in heterozygous and homozygous yeast. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1017-1023.	2.6	65
78	2 Whole Chromosome Analysis. Methods in Microbiology, 1998, , 15-31.	0.8	15
79	Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Human Molecular Genetics, 1997, 6, 1305-1313.	2.9	121
80	Chromosome ends: all the same under their caps. Current Opinion in Genetics and Development, 1997, 7, 822-828.	3.3	160
81	Life with 6000 Genes. Science, 1996, 274, 546-567.	12.6	3,548
82	Pneumocystis carinii telomere repeats are composed of TTAGGG and the subtelomeric sequence contains a gene encoding the major surface glycoprotein. Molecular Microbiology, 1996, 19, 273-281.	2.5	52
83	Pat1: a topoisomerase II-associated protein required for faithful chromosome transmission in Saccharomyces cerevisiae. Nucleic Acids Research, 1996, 24, 4791-4797.	14.5	54
84	<i>SGS1</i> , a Homologue of the Bloom's and Werner's Syndrome Genes, Is Required for Maintenance of Genome Stability in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 144, 935-945.	2.9	368
85	A new genetically isolated population of theSaccharomyces sensu stricto complex from Brazil. Antonie Van Leeuwenhoek, 1995, 67, 351-355.	1.7	53
86	Sequence analysis of the right end of chromosome XV inSaccharomyces cerevisiae: An insight into the structural and functional significance of sub-telomeric repeat sequences. Yeast, 1995, 11, 371-382.	1.7	36
87	Genetic mapping of the α-galactosidaseMEL gene family on right and left telomeres ofSaccharomyces cerevisiae. Yeast, 1995, 11, 481-483.	1.7	34
88	The chromosome ends ofSaccharomyces cerevisiae. Yeast, 1995, 11, 1553-1573.	1.7	233
89	The human SB1.8 gene (DXS423E) encodes a putative chromosome segregation protein conserved in lower eukaryotes and prokaryotes. Human Molecular Genetics, 1995, 4, 243-249.	2.9	25
90	Sgs1: A eukaryotic homolog of E. coil RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell, 1995, 81, 253-260.	28.9	416

#	Article	IF	CITATIONS
91	Two new genetically isolated populations of the Saccharomyces sensu stricto complex from Japan Journal of General and Applied Microbiology, 1995, 41, 499-505.	0.7	46
92	Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science, 1994, 265, 2077-2082.	12.6	303
93	III. Yeast sequencing reports. Corrected sequence for the right telomere ofSaccharomyces cerevisiae chromosome III. Yeast, 1994, 10, 271-274.	1.7	16
94	Complete DNA sequence of yeast chromosome XI. Nature, 1994, 369, 371-378.	27.8	382
95	Rescue of a single yeast artificial chromosome from a cotransformation event utilizing segregation at meiosis. Genetic Analysis, Techniques and Applications, 1993, 10, 123-127.	1.5	2
96	Genetic homology betweenSaccharomyces cerevisiae and its sibling speciesS. paradoxus andS. bayanus: Electrophoretic karyotypes. Yeast, 1992, 8, 599-612.	1.7	179
97	Evolutionarily recent transfer of a group I mitochondrial intron to telomere regions in Saccharomyces cerevisiae. Current Genetics, 1991, 20, 411-415.	1.7	51
98	An Exact Test for Hardy-Weinberg and Multiple Alleles. Biometrics, 1987, 43, 805.	1.4	249
99	Three-allele synergistic mixed model for insulin-dependent diabetes mellitus. Diabetes, 1986, 35, 958-963.	0.6	10
100	Sickle Cell Anemia: "Interesting Pathology" and "Rarely Told Stories". American Biology Teacher, 1985, 47, 183-187.	0.2	1
101	The affected sib method. IV. Sib trios. Annals of Human Genetics, 1985, 49, 303-314.	0.8	51
102	Meiotic Gene Conversion Mediates Gene Amplification in Yeast. Cold Spring Harbor Symposia on Quantitative Biology, 1984, 49, 55-65.	1.1	31
103	The affected sib method. II. The intermediate model. Annals of Human Genetics, 1983, 47, 225-243.	0.8	31