Spyros S Skandalis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyaluronan network: a driving force in cancer progression. American Journal of Physiology - Cell Physiology, 2022, 323, C145-C158.	4.6	8
2	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	4.7	320
3	TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers, 2021, 13, 1021.	3.7	7
4	Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors. Frontiers in Oncology, 2021, 11, 826865.	2.8	16
5	Intracellular hyaluronan: Importance for cellular functions. Seminars in Cancer Biology, 2020, 62, 20-30.	9.6	49
6	Salicylate suppresses the oncogenic hyaluronan network in metastatic breast cancer cells. Matrix Biology Plus, 2020, 6-7, 100031.	3.5	15
7	Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cellular Signalling, 2019, 63, 109377.	3.6	91
8	Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biology, 2019, 78-79, 100-117.	3.6	85
9	Tumor-suppressive functions of 4-MU on breast cancer cells of different ER status: Regulation of hyaluronan/HAS2/CD44 and specific matrix effectors. Matrix Biology, 2019, 78-79, 118-138.	3.6	61
10	Cyclin-dependent kinase 5 mediates pleiotrophin-induced endothelial cell migration. Scientific Reports, 2018, 8, 5893.	3.3	14
11	IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules. Scientific Reports, 2017, 7, 40138.	3.3	29
12	Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biology, 2017, 59, 3-22.	3.6	156
13	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27.	13.7	1,581
14	Impact of Extracellular Matrix on Cellular Behavior: A Source of Molecular Targets in Disease. BioMed Research International, 2015, 2015, 1-2.	1.9	5
15	Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biology, 2015, 43, 42-60.	3.6	140
16	Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 276-300.	7.4	96
17	Serglycin: At the Crossroad of Inflammation and Malignancy. Frontiers in Oncology, 2014, 3, 327.	2.8	119
18	Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: Focus on the role and impact of proteoglycans. Matrix Biology, 2014, 35, 182-193.	3.6	82

SPYROS S SKANDALIS

#	Article	IF	CITATIONS
19	Cell–matrix interactions: focus on proteoglycan–proteinase interplay and pharmacological targeting in cancer. FEBS Journal, 2014, 281, 5023-5042.	4.7	80
20	Advances and Advantages of Nanomedicine in the Pharmacological Targeting of Hyaluronan-CD44 Interactions and Signaling in Cancer. Advances in Cancer Research, 2014, 123, 277-317.	5.0	33
21	Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas. BMC Cancer, 2011, 11, 314.	2.6	44
22	The structural and compositional changes of glycosaminoglycans are closely associated with tissue type in human laryngeal cancer. Biochimie, 2007, 89, 1573-1580.	2.6	15
23	Chondroitin sulphate proteoglycans in the vitreous gel of sheep and goat. Biomedical Chromatography, 2007, 21, 451-457.	1.7	3
24	Cartilage aggrecan undergoes significant compositional and structural alterations during laryngeal cancer. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1046-1053.	2.4	19
25	The extractability of extracellular matrix components as a marker of cartilage remodeling in laryngeal squamous cell carcinoma. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 81-88.	2.4	10
26	Proteoglycans in human laryngeal cartilage. Identification of proteoglycan types in successive cartilage extracts with particular reference to aggregating proteoglycans. Biochimie, 2004, 86, 221-229.	2.6	19
27	Matrix proteoglycans are markedly affected in advanced laryngeal squamous cell carcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 152-161.	3.8	34
28	Glycosaminoglycans in early chick embryo. International Journal of Developmental Biology, 2003, 47, 311-4.	0.6	3