Shu-Lei Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734175/publications.pdf

Version: 2024-02-01

396 papers 33,851 citations

97 h-index 161 g-index

403 all docs 403 docs citations

403 times ranked 22104 citing authors

#	Article	IF	Citations
1	Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chinese Chemical Letters, 2022, 33, 683-692.	9.0	45
2	Key Factors for Binders to Enhance the Electrochemical Performance of Silicon Anodes through Molecular Design. Small, 2022, 18, e2101680.	10.0	34
3	Packing Sulfur Species by Phosphoreneâ€Derived Catalytic Interface for Electrolyteâ€Lean Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2106966.	14.9	27
4	Organic Cathode Materials for Sodiumâ€ion Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	14.9	75
5	Advanced Characterization Techniques Paving the Way for Commercialization of Low ost Prussian Blue Analog Cathodes. Advanced Functional Materials, 2022, 32, 2108616.	14.9	35
6	Activating MoS ₂ Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Liâ€O ₂ Batteries. Advanced Functional Materials, 2022, 32, 2108153.	14.9	74
7	Novel Li ₃ VO ₄ Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their Inâ€Situ Lithium Storage Mechanism. Advanced Science, 2022, 9, e2103493.	11.2	23
8	Confining Zeroâ€Valent Platinum Single Atoms in αâ€MoC _{1â^'} <i>_x</i> for pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, 2108464.	14.9	43
9	Co Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes Grafted CNTs as Electrocatalysts for Enhanced Oxygen Reduction Reaction. Advanced Materials Interfaces, 2022, 9, .	3.7	8
10	The Emerging Electrochemical Activation Tactic for Aqueous Energy Storage: Fundamentals, Applications, and Future. Advanced Functional Materials, 2022, 32, .	14.9	34
11	Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li–O ₂ batteries. Chemical Science, 2022, 13, 2841-2856.	7.4	20
12	Battery technology and sustainable energy storage and conversion as a new energy resource replacing fossil fuels. , 2022, 1 , .		10
13	Electrolytes/Interphases: Enabling Distinguishable Sulfur Redox Processes in Roomâ€Temperature Sodiumâ€Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	29
14	Continuous Carbon Channels Enable Full Naâ€lon Accessibility for Superior Roomâ€Temperature Naâ€"S Batteries. Advanced Materials, 2022, 34, e2108363.	21.0	49
15	Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Nano Letters, 2022, 22, 1302-1310.	9.1	68
16	A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trappingâ€Diffusionâ€Catalysis in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2108835.	21.0	86
17	Regulation of morphology evolution and Mn dissolution for ultra-long cycled spinel LiMn2O4 cathode materials by B-doping. Journal of Power Sources, 2022, 524, 231073.	7.8	21
18	Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 2513-2521.	11.2	38

#	Article	IF	CITATIONS
19	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
20	Polyoxometalate Ionic Sponge Enabled Dendrite‑Free and Highly Stable Lithium Metal Anode. Small Methods, 2022, 6, e2101613.	8.6	17
21	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	2.0	3
22	Prussian Blue Analogues for Sodiumâ€ion Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	21.0	252
23	Enhanced photoluminescence of hollow CaWO ₄ microspheres: the fast fabrication, structural manipulation, and exploration of the growth mechanism. Materials Chemistry Frontiers, 2022, 6, 1046-1055.	5.9	4
24	Two-dimensional calcium terephthalate as a low-cost, high-performance anode for sodium-ion batteries. Chemical Communications, 2022, 58, 4048-4051.	4.1	8
25	Graphene-Supported Naphthalene-Based Polyimide Composite as a High-Performance Sodium Storage Cathode. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11448-11456.	8.0	8
26	Effect of Eliminating Water in Prussian Blue Cathode for Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	66
27	Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodineâ€Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
28	Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage. Journal of Materials Science and Technology, 2022, 119, 167-181.	10.7	26
29	Toward <scp>highâ€performance lithiumâ€oxygen</scp> batteries with cobaltâ€based transition metal oxide catalysts: Advanced strategies and mechanical insights. InformaÄnÃ-Materiály, 2022, 4, .	17.3	29
30	Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickelâ€Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	7
31	Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickelâ€Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
32	Highâ€Voltage, Highly Reversible Sodium Batteries Enabled by Fluorineâ€Rich Electrode/Electrolyte Interphases. Small Methods, 2022, 6, e2200209.	8.6	22
33	Architecting Braided Porous Carbon Fibers Based on Highâ€Density Catalytic Crystal Planes to Achieve Highly Reversible Sodiumâ€lon Storage. Advanced Science, 2022, 9, e2104780.	11.2	13
34	Twoâ€inâ€one shell configuration for bimetal selenides toward fast sodium storage within broadened voltage windows. , 2022, 4, 586-597.		10
35	Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges. Energy Storage Materials, 2022, 50, 21-46.	18.0	79
36	Research Development on Aqueous Ammoniumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	58

#	Article	IF	CITATIONS
37	Ball Milling Solidâ€State Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â^³<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	53
38	Ball Milling Solidâ€State Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â^^<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	11
39	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€toâ€Charge Organic Sodiumâ€lon Batteries. Small Methods, 2022, 6, .	8.6	15
40	Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustainable Materials and Technologies, 2022, 33, e00446.	3.3	18
41	Formulating Highâ€Rate and Longâ€Cycle Heterostructured Layered Oxide Cathodes by Local Chemistry and Orbital Hybridization Modulation for Sodiumâ€lon Batteries. Advanced Materials, 2022, 34, .	21.0	48
42	Na _{1.51} Fe[Fe(CN) ₆] _{0.87} ·1.83H ₂ O Hollow Nanospheres via Nonâ€Aqueous Ballâ€Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodiumâ€ion Batteries. Small Methods, 2022, 6, .	8.6	15
43	Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 11102-11114.	14.6	50
44	Strain Engineering by Local Chemistry Manipulation of Triphase Heterostructured Oxide Cathodes to Facilitate Phase Transitions for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	25
45	Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. Journal of Materials Science and Technology, 2021, 68, 140-146.	10.7	20
46	Bifunctional Effects of Cation Additive on Naâ€O ₂ Batteries. Angewandte Chemie, 2021, 133, 3242-3248.	2.0	9
47	Bifunctional Effects of Cation Additive on Naâ€O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 3205-3211.	13.8	35
48	Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. Chemical Engineering Journal, 2021, 408, 127348.	12.7	25
49	Rechargeable Sodiumâ€Based Hybrid Metalâ€lon Batteries toward Advanced Energy Storage. Advanced Functional Materials, 2021, 31, 2006457.	14.9	39
50	Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Naâ€lon Batteries beyond Liâ€lon and Kâ€lon Counterparts. Advanced Energy Materials, 2021, 11, .	19.5	282
51	Inâ€Situ Electrochemically Activated Surface Vanadium Valence in V ₂ C MXene to Achieve High Capacity and Superior Rate Performance for Znâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2008033.	14.9	156
52	Sustainable S cathodes with synergic electrocatalysis for room-temperature Na–S batteries. Journal of Materials Chemistry A, 2021, 9, 566-574.	10.3	39
53	Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021, 36, 10-30.	18.0	82
54	Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy and Environmental Science, 2021, 14, 158-179.	30.8	224

#	Article	IF	Citations
55	Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, 2021, 17, e1903854.	10.0	45
56	Li ₂ Sâ€Based Liâ€Ion Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	10.0	41
57	Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small, 2021, 17, e1903380.	10.0	87
58	Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries. Small, 2021, 17, e1902767.	10.0	55
59	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€Ion Batteries and Potassiumâ€Ion Batteries. Small, 2021, 17, e1903194.	10.0	284
60	Cobalt Chalcogenides/Cobalt Phosphides/Cobaltates with Hierarchical Nanostructures for Anode Materials of Lithiumâ€lon Batteries: Improving the Lithiation Environment. Small, 2021, 17, e1903418.	10.0	30
61	Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries. Cell Reports Physical Science, 2021, 2, 100286.	5.6	30
62	Defect-free-induced Na ⁺ disordering in electrode materials. Energy and Environmental Science, 2021, 14, 3130-3140.	30.8	62
63	A Li ₃ VO ₄ micro/nanoscale anode with fast ion transportation for advanced lithium-ion batteries: a mini-review. Journal of Materials Chemistry C, 2021, 9, 14981-14996.	5.5	15
64	Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy and Environmental Science, 2021, 14, 3757-3795.	30.8	62
65	Mini-review: progress on micro/nanoscale MnMoO ₄ as an electrode material for advanced supercapacitor applications. Materials Chemistry Frontiers, 2021, 5, 7403-7418.	5.9	19
66	CuP2 as high-capacity and long-cycle-life anode for potassium-ion batteries. Journal of Energy Chemistry, 2021, 63, 246-252.	12.9	18
67	Manipulating metal–sulfur interactions for achieving highâ€performance S cathodes for room temperature Li/Na–sulfur batteries. , 2021, 3, 253-270.		37
68	Tunable Electrocatalytic Behavior of Sodiated MoS ₂ Active Sites toward Efficient Sulfur Redox Reactions in Roomâ€₹emperature Na–S Batteries. Advanced Materials, 2021, 33, e2100229.	21.0	66
69	From Fundamental Research to Applications: The Success Story of the Institute for Superconducting and Electronic Materials. Small, 2021, 17, e2007636.	10.0	1
70	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie, 2021, 133, 11582-11587.	2.0	17
71	Nonâ€Noble Metalâ€Based Catalysts Applied to Hydrogen Evolution from Hydrolysis of Boron Hydrides. Small Structures, 2021, 2, 2000135.	12.0	19
72	Carbonaceous Hosts for Sulfur Cathode in Alkaliâ€Metal/S (Alkali Metal = Lithium, Sodium, Potassium) Batteries. Small, 2021, 17, e2006504.	10.0	17

#	Article	IF	CITATIONS
73	Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for Highâ∈Performance Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2100757.	19.5	99
74	Atomic Cobalt Vacancyâ€Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2101797.	14.9	26
75	Enhancing the understanding of the redox properties of lithium-inserted anthraquinone derivatives by regulating molecular structure. Journal of Electroanalytical Chemistry, 2021, 887, 115172.	3.8	6
76	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie - International Edition, 2021, 60, 11481-11486.	13.8	124
77	Facile Synthesis of Birnessite Î'-MnO ₂ and Carbon Nanotube Composites as Effective Catalysts for Li-CO ₂ Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 16585-16593.	8.0	29
78	A Lowâ€Strain Potassiumâ€Rich Prussian Blue Analogue Cathode for High Power Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 13050-13056.	13.8	90
79	A Lowâ€Strain Potassiumâ€Rich Prussian Blue Analogue Cathode for High Power Potassiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13160-13166.	2.0	16
80	Hierarchical Ti ₃ C ₂ T _{<i>x</i>} MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO ₂ Batteries. ACS Nano, 2021, 15, 8407-8417.	14.6	54
81	Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na–S Batteries. Nano-Micro Letters, 2021, 13, 121.	27.0	31
82	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	5.1	21
83	Architecting Freestanding Sulfur Cathodes for Superior Roomâ€Temperature Na–S Batteries. Advanced Functional Materials, 2021, 31, 2102280.	14.9	46
84	In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage. Advanced Energy Materials, 2021, 11, 2100973.	19.5	74
85	Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li–S Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28405-28414.	8.0	19
86	A P3-Type K _{1/2} Mn _{5/6} Mg _{1/12} Ni _{1/12} O ₂ Cathode Material for Potassium-Ion Batteries with High Structural Reversibility Secured by the Mg–Ni Pinning Effect. ACS Applied Materials & Diterfaces, 2021, 13, 28369-28377.	8.0	29
87	Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors. Polymers, 2021, 13, 2137.	4.5	19
88	Research progress of flexible sodium-ion batteries derived from renewable polymer materials. Electrochemistry Communications, 2021, 128, 107067.	4.7	17
89	Epitaxial Nickel Ferrocyanide Stabilizes Jahn–Teller Distortions of Manganese Ferrocyanide for Sodium″on Batteries. Angewandte Chemie, 2021, 133, 18667-18674.	2.0	25
90	Epitaxial Nickel Ferrocyanide Stabilizes Jahn–Teller Distortions of Manganese Ferrocyanide for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 18519-18526.	13.8	63

#	Article	IF	Citations
91	Chaotropic Anion and Fast-Kinetics Cathode Enabling Low-Temperature Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 2704-2712.	17.4	153
92	Recent Progress on Intercalationâ€Based Anode Materials for Lowâ€Cost Sodiumâ€Ion Batteries. ChemSusChem, 2021, 14, 3724-3743.	6.8	20
93	Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries. Cell Reports Physical Science, 2021, 2, 100539.	5.6	20
94	NbSe ₂ Meets C ₂ N: A 2Dâ€2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultraâ€Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101250.	19.5	89
95	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	5.6	31
96	Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries. ACS Applied Materials & Emp; Interfaces, 2021, 13, 44358-44368.	8.0	50
97	Quinone-Based Conducting Three-Dimensional Metal–Organic Framework as a Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 20814-20820.	3.1	27
98	Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode. Cell Reports Physical Science, 2021, 2, 100547.	5.6	23
99	Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 297, 120390.	20.2	46
100	Copper phosphide as a promising anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8378-8385.	10.3	16
101	Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7595-7605.	5.9	11
102	Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chemical Science, 2021, 12, 2345-2356.	7.4	43
103	Electrochemical energy storage devices working in extreme conditions. Energy and Environmental Science, 2021, 14, 3323-3351.	30.8	140
104	Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal–air battery systems. Journal of Materials Chemistry A, 2021, 9, 6671-6693.	10.3	37
105	Binders for sodium-ion batteries: progress, challenges and strategies. Chemical Communications, 2021, 57, 12406-12416.	4.1	26
106	The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1675-1683.	4.9	8
107	Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. EScience, 2021, 1, 13-27.	41.6	194
108	Lowâ€Cost Polyanionâ€Type Sulfate Cathode for Sodiumâ€Ion Battery. Advanced Energy Materials, 2021, 11, 2101751.	19.5	48

#	Article	IF	Citations
109	Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction. Nano Letters, 2021, 21, 7970-7978.	9.1	33
110	Conductive CuCoâ€Based Bimetal Organic Framework for Efficient Hydrogen Evolution. Advanced Materials, 2021, 33, e2106781.	21.0	116
111	MnCo ₂ S ₄ â€CoS _{1.097} Heterostructure Nanotubes as High Efficiency Cathode Catalysts for Stable and Longâ€Life Lithiumâ€Oxygen Batteries Under High Current Conditions. Advanced Science, 2021, 8, e2103302.	11.2	42
112	Processing Rusty Metals into Versatile Prussian Blue for Sustainable Energy Storage. Advanced Energy Materials, 2021, 11, 2102356.	19.5	41
113	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	13.7	96
114	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie, 2021, 133, 27292-27300.	2.0	17
115	Fireâ€Retardant, Stableâ€Cycling and Highâ€Safety Sodium Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 27086-27094.	13.8	63
116	The Dual Functions of Defectâ€Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for LiS Batteries. Small, 2021, 17, e2103535.	10.0	23
117	Dynamic structural evolution and controllable redox potential for abnormal high-voltage sodium layered oxide cathodes. Cell Reports Physical Science, 2021, 2, 100631.	5.6	19
118	Alkali and alkaline-earth metal ion–solvent co-intercalation reactions in nonaqueous rechargeable batteries. Chemical Science, 2021, 12, 15206-15218.	7.4	6
119	Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts. Advanced Energy Materials, 2021, 11, .	19.5	94
120	Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. EScience, 2021, 1, 141-162.	41.6	137
121	Synthesis Strategies and Structural Design of Porous Carbonâ€Incorporated Anodes for Sodiumâ€Ion Batteries. Small Methods, 2020, 4, 1900163.	8.6	49
122	Remedies for Polysulfide Dissolution in Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1903952.	21.0	96
123	Cobaltâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Arrays for Flexible Zinc–Air Batteries. Small Methods, 2020, 4, 1900571.	8.6	91
124	Manipulating 2D Few‣ayer Metal Sulfides as Anode Towards Enhanced Sodiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 236-253.	4.7	16
125	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2470-2477.	2.0	26
126	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	13.8	101

#	Article	IF	Citations
127	The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 1289-1303.	5.9	30
128	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	10.3	37
129	Facile Synthesis of Hierarchical Hollow CoP@C Composites with Superior Performance for Sodium and Potassium Storage. Angewandte Chemie - International Edition, 2020, 59, 5159-5164.	13.8	142
130	Facile Synthesis of Hierarchical Hollow CoP@C Composites with Superior Performance for Sodium and Potassium Storage. Angewandte Chemie, 2020, 132, 5197-5202.	2.0	19
131	Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate. Advanced Energy Materials, 2020, 10, 1903006.	19.5	67
132	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002244.	19.5	79
133	A Metal–Polymer Hybrid Biomimetic System for use in the Chemodynamicâ€Enhanced Photothermal Therapy of Cancers. Small, 2020, 16, e2004161.	10.0	40
134	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie - International Edition, 2020, 59, 22171-22178.	13.8	80
135	Multiregion Janus-Featured Cobalt Phosphide-Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries. ACS Nano, 2020, 14, 10284-10293.	14.6	81
136	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001852.	19.5	125
137	High-yielding carbon nanofibers grown on NIPS-derived porous nickel as a flexible electrode for supercapacitors. Materials Chemistry Frontiers, 2020, 4, 2976-2981.	5.9	13
138	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and Highâ€Capacity Naâ€lon Storage. Advanced Energy Materials, 2020, 10, 2001033.	19.5	25
139	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie, 2020, 132, 22355-22362.	2.0	62
140	Multifunctionalities of Graphene for Exploiting a Facile Conversion Reaction Route of Perovskite CoSnO ₃ for Highly Reversible Na Ion Storage. Journal of Physical Chemistry Letters, 2020, 11, 7988-7995.	4.6	5
141	Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications. Electrochemical Energy Reviews, 2020, 3, 766-792.	25.5	86
142	Single-atom Ru anchored in nitrogen-doped MXene (Ti ₃ C ₂ T _x) as an efficient catalyst for the hydrogen evolution reaction at all pH values. Journal of Materials Chemistry A, 2020, 8, 24710-24717.	10.3	102
143	Sodium–Sulfur Batteries: Remedies for Polysulfide Dissolution in Roomâ€Temperature Sodium–Sulfur Batteries (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070145.	21.0	2
144	Conductive Boron Nitride as Promising Catalyst Support for the Oxygen Evolution Reaction. Advanced Energy Materials, 2020, 10, 1902521.	19.5	28

#	Article	IF	Citations
145	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	21.0	251
146	Boosting up the Li-CO2 Battery by the Ultrathin RuRh Nanosheet. Matter, 2020, 2, 1356-1358.	10.0	5
147	Nanostructured CoS ₂ -Decorated Hollow Carbon Spheres: A Performance Booster for Li-lon/Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 6447-6459.	5.1	17
148	Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 843, 156050.	5.5	32
149	Ultrathin 2D Mesoporous TiO ₂ /rGO Heterostructure for Highâ€Performance Lithium Storage. Small, 2020, 16, e2000030.	10.0	41
150	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	2.0	20
151	A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for Highâ€Performance Sodiumâ€Ion Battery. Small, 2020, 16, e1906946.	10.0	57
152	The Cathode Choice for Commercialization of Sodiumâ€Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs. Advanced Functional Materials, 2020, 30, 1909530.	14.9	276
153	Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11, 980.	12.8	283
154	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodium″on Batteries. Angewandte Chemie, 2020, 132, 9385-9390.	2.0	26
155	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodium″on Batteries. Angewandte Chemie - International Edition, 2020, 59, 9299-9304.	13.8	84
156	Hierarchically Porous MoS ₂ â€"Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10402-10409.	8.0	36
157	A Highâ€Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Roomâ€√emperature Na–S Batteries. Advanced Materials, 2020, 32, e1906700.	21.0	126
158	Zinc–Air Batteries: Cobaltâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Arrays for Flexible Zinc–Air Batteries (Small Methods 1/2020). Small Methods, 2020, 4, 2070004.	8.6	2
159	S/N-doped carbon nanofibers affording Fe7S8 particles with superior sodium storage. Journal of Power Sources, 2020, 451, 227790.	7.8	43
160	Self-assembling RuO ₂ nanogranulates with few carbon layers as an interconnected nanoporous structure for lithium–oxygen batteries. Chemical Communications, 2020, 56, 7253-7256.	4.1	5
161	Manipulating Molecular Structure and Morphology to Invoke Highâ€Performance Sodium Storage of Copper Phosphide. Advanced Energy Materials, 2020, 10, 1903542.	19.5	38
162	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12083.	13.8	78

#	Article	lF	CITATIONS
163	Three-Dimensional Electronic Network Assisted by TiN Conductive Pillars and Chemical Adsorption to Boost the Electrochemical Performance of Red Phosphorus. ACS Nano, 2020, 14, 4609-4617.	14.6	31
164	Vitalization of P2–Na2/3Ni1/3Mn2/3O2 at high-voltage cyclability via combined structural modulation for sodium-ion batteries. Energy Storage Materials, 2020, 29, 182-189.	18.0	70
165	Understanding Highâ∈Rate K ⁺ â∈Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13017-13024.	2.0	28
166	Understanding Highâ∈Rate K ⁺ â∈Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12917-12924.	13.8	112
167	Full Activation of Mn ⁴⁺ /Mn ³⁺ Redox in Na ₄ MnCr(PO ₄) ₃ as a Highâ€Voltage and Highâ€Rate Cathode Material for Sodiumâ€ion Batteries. Small, 2020, 16, e2001524.	10.0	98
168	Recent progress on understanding and constructing reliable Na anode for aprotic Na-O2 batteries: A mini review. Electrochemistry Communications, 2020, 118, 106797.	4.7	12
169	Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Storage Materials, 2020, 30, 42-51.	18.0	62
170	Electrocatalyzing S Cathodes <i>via</i> Multisulfiphilic Sites for Superior Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2020, 14, 7259-7268.	14.6	100
171	Nanomaterials Innovation. Small, 2019, 15, e1902246.	10.0	3
172	Recent research progresses in ether―and esterâ€based electrolytes for sodiumâ€ion batteries. InformaÄnÃ- Materiály, 2019, 1, 376-389.	17.3	183
173	Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chemistry, 2019, 11, 695-701.	13.6	86
174	Tuning Oxygen Redox Chemistry in Liâ€Rich Mnâ€Based Layered Oxide Cathodes by Modulating Cation Arrangement. Advanced Materials, 2019, 31, e1901808.	21.0	86
175	Atomic‣ocal Environments of Singleâ€Atom Catalysts: Synthesis, Electronic Structure, and Activity. Advanced Energy Materials, 2019, 9, 1900722.	19.5	128
176	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€ion Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	13.8	47
177	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€lon Storage. Angewandte Chemie, 2019, 131, 14263-14266.	2.0	13
178	Single Atoms for Energy Applications. Small Methods, 2019, 3, 1900523.	8.6	7
179	Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nature Communications, 2019, 10, 4793.	12.8	147
180	Ultrathin 2D TiS ₂ Nanosheets for High Capacity and Longâ€Life Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803210.	19.5	100

#	Article	IF	CITATIONS
181	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 4062-4066.	2.0	11
182	Phosphorusâ€Modulationâ€Triggered Surface Disorder in Titanium Dioxide Nanocrystals Enables Exceptional Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 4022-4026.	13.8	56
183	Understanding Challenges of Cathode Materials for Sodiumâ€lon Batteries using Synchrotronâ€Based Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 842-851.	4.7	23
184	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
185	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 11868-11873.	13.8	229
186	General Ï€â€Electronâ€Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Singleâ€Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angewandte Chemie, 2019, 131, 11994-11999.	2.0	28
187	Schwefelâ€basierte Elektroden mit Mehrelektronenreaktionen für Raumtemperaturâ€Natriumionenspeicherung. Angewandte Chemie, 2019, 131, 18490-18504.	2.0	9
188	Sulfurâ€Based Electrodes that Function via Multielectron Reactions for Roomâ€Temperature Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 18324-18337.	13.8	69
189	A nanoarchitectured Na ₆ Fe ₅ (SO ₄) ₈ /CNTs cathode for building a low-cost 3.6ÂV sodium-ion full battery with superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 14656-14669.	10.3	51
190	Ultraflexible Transparent Bioâ€Based Polymer Conductive Films Based on Ag Nanowires. Small, 2019, 15, e1805094.	10.0	23
191	Strategies Toward Stable Nonaqueous Alkali Metal–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900464.	19.5	35
192	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as a cathode material with high-rate and long-life for sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 9215-9221.	10.3	102
193	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	18.0	90
194	Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 2019, 15, e1900470.	10.0	226
195	A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11976-11984.	10.3	78
196	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	12.8	260
197	Highâ€Abundance and Lowâ€Cost Metalâ€Based Cathode Materials for Sodiumâ€lon Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	19.5	176
198	Recent Progress of Layered Transition Metal Oxide Cathodes for Sodiumâ€lon Batteries. Small, 2019, 15, e1805381.	10.0	246

#	Article	IF	CITATIONS
199	The Quasiâ€Ptâ€Allotrope Catalyst: Hollow PtCo@singleâ€Atom Pt ₁ on Nitrogenâ€Doped Carbon toward Superior Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1807340.	14.9	97
200	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	8.6	99
201	Oxygen vacancies promoting the electrocatalytic performance of CeO ₂ nanorods as cathode materials for Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 6552-6561.	10.3	85
202	Single crystal polyoxoniobate derived NbO/Cu nanocrystalline@N-doped carbon loaded onto reduced graphene oxide enabling high rate and high capacity Li/Na storage. Journal of Materials Chemistry A, 2019, 7, 26513-26523.	10.3	10
203	Lotus rhizome-like S/N–C with embedded WS ₂ for superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 25932-25943.	10.3	39
204	Improving the Li–S battery performance by applying a combined interface engineering approach on the Li ₂ S cathode. Journal of Materials Chemistry A, 2019, 7, 27247-27255.	10.3	15
205	Nanocomposites LiMnxFe1-xPO4/C synthesized via freeze drying assisted sol-gel routine and their magnetic and electrochemical properties. Journal of Alloys and Compounds, 2019, 779, 339-346.	5.5	13
206	A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in Highâ∈Rate and Longâ∈Cycling Sodiumâ∈Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 1412-1416.	13.8	92
207	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	14.6	131
208	Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nature Communications, 2019, 10, 5203.	12.8	202
209	Organic Crossâ€Linker Enabling a 3D Porous Skeleton–Supported Na⟨sub⟩3⟨/sub⟩V⟨sub⟩2⟨/sub⟩(PO⟨sub>4⟨/sub⟩)⟨sub>3⟨/sub⟩/Carbon Composite for High Power Sodiumâ€lon Battery Cathode. Small Methods, 2019, 3, 1800169.	8.6	87
210	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie, 2019, 131, 1498-1502.	¹ 2.0	63
211	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie - International Edition, 2019, 58, 1484-1488.	ır 13.8	165
212	A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in Highâ∈Rate and Longâ∈Cycling Sodiumâ∈Ion Batteries. Angewandte Chemie, 2019, 131, 1426-1430). ^{2.0}	21
213	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	19.5	78
214	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	5. 3	46
215	Remarkable Enhancement in Sodiumâ€lon Kinetics of NaFe ₂ (CN) ₆ by Chemical Bonding with Graphene. Small Methods, 2018, 2, 1700346.	8.6	40
216	Nanocomposite LiFePO4·Li3V2(PO4)3/C synthesized by freeze-drying assisted sol-gel method and its magnetic and electrochemical properties. Science China Materials, 2018, 61, 39-47.	6.3	10

#	Article	IF	Citations
217	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	10.3	127
218	Nanocomposite Materials for the Sodium–Ion Battery: A Review. Small, 2018, 14, 1702514.	10.0	244
219	Research Progress in MnO ₂ –Carbon Based Supercapacitor Electrode Materials. Small, 2018, 14, e1702883.	10.0	230
220	Sodiumâ€ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 2018, 8, 1701428.	19.5	494
221	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium″on Batteries. Advanced Energy Materials, 2018, 8, 1701415.	19.5	436
222	Feâ€Niâ€Mo Nitride Porous Nanotubes for Full Water Splitting and Znâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1802327.	19.5	227
223	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	12.8	305
224	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie - International Edition, 2018, 57, 14796-14800.	13.8	102
225	All Carbon Dual Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 35978-35983.	8.0	93
226	Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. Journal of the American Chemical Society, 2018, 140, 13644-13653.	13.7	430
227	An Alternative to Lithium Metal Anodes: Nonâ€dendritic and Highly Reversible Sodium Metal Anodes for Li–Na Hybrid Batteries. Angewandte Chemie, 2018, 130, 15012-15016.	2.0	14
228	Electronic and Defective Engineering of Electrospun CaMnO ₃ Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zincâ€"Air Batteries. Advanced Energy Materials, 2018, 8, 1800612.	19.5	234
229	lon selective separators based on graphene oxide for stabilizing lithium organic batteries. Inorganic Chemistry Frontiers, 2018, 5, 1869-1875.	6.0	11
230	ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19626-19632.	8.0	111
231	A Transferrin Triggered Pathway for Highly Targeted Delivery of Grapheneâ€Based Nanodrugs to Treat Choroidal Melanoma. Advanced Healthcare Materials, 2018, 7, e1800377.	7.6	16
232	Silver Nanowire-Based Flexible Transparent Composite Film for Curvature Measurements. ACS Applied Nano Materials, 2018, 1, 3859-3866.	5.0	12
233	Novel Nonâ€Carbon Sulfur Hosts Based on Strong Chemisorption for Lithium–Sulfur Batteries. Small, 2018, 14, e1801987.	10.0	68
234	A Novel Graphene Oxide Wrapped Na ₂ Fe ₂ (SO ₄) ₃ /C Cathode Composite for Long Life and High Energy Density Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1800944.	19.5	101

#	Article	IF	Citations
235	Progress and Future Perspectives on Li(Na)–CO ₂ Batteries. Advanced Sustainable Systems, 2018, 2, 1800060.	5.3	54
236	A "Tandem―Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors. ACS Applied Materials & Diterfaces, 2018, 10, 22031-22041.	8.0	40
237	Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 33, 205-212.	16.0	54
238	Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 5283-5289.	10.3	49
239	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232, 123-131.	5.2	60
240	Construction of 3D pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /conducting carbon composites for high-power sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9833-9841.	10.3	101
241	Functional membrane separators for next-generation high-energy rechargeable batteries. National Science Review, 2017, 4, 917-933.	9.5	89
242	Mo ₂ C/CNT: An Efficient Catalyst for Rechargeable Li–CO ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700564.	14.9	236
243	Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery. Advanced Energy Materials, 2017, 7, 1700234.	19.5	44
244	Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1700278.	19.5	268
245	Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Advanced Materials, 2017, 29, 1700449.	21.0	96
246	Advances and Challenges in Metal Sulfides/Selenides for Nextâ€Generation Rechargeable Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700606.	21.0	726
247	Roomâ€Temperature Sodiumâ€Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Advanced Energy Materials, 2017, 7, 1602829.	19.5	270
248	Improved rate and cycle performance of nano-sized 5LiFePO 4 \hat{A} -Li 3 V 2 (PO 4) 3 /C via high-energy ball milling assisted carbothermal reduction. Journal of Alloys and Compounds, 2017, 719, 281-287.	5.5	12
249	Capillary-Induced Ge Uniformly Distributed in N-Doped Carbon Nanotubes with Enhanced Li-Storage Performance. Small, 2017, 13, 1700920.	10.0	27
250	Screw dislocation-driven t-Ba ₂ V ₂ O ₇ helical meso/nanosquares: microwave irradiation assisted-SDBS fabrication and their unique magnetic properties. Journal of Materials Chemistry C, 2017, 5, 6336-6342.	5.5	13
251	Carbonâ€Coated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535.	21.0	161
252	Solving Key Challenges in Battery Research Using In Situ Synchrotron and Neutron Techniques. Advanced Energy Materials, 2017, 7, 1602831.	19.5	67

#	Article	IF	CITATIONS
253	Multiangular Rod-Shaped Na _{0.44} MnO ₂ as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3644-3652.	8.0	107
254	Nano-sized cathode material LiMn0.5Fe0.5PO4/C synthesized via improved sol-gel routine and its magnetic and electrochemical properties. Electrochimica Acta, 2017, 255, 205-211.	5.2	27
255	Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Applied Materials & Diterfaces, 2017, 9, 37682-37693.	8.0	52
256	Current Progress on Rechargeable Magnesium–Air Battery. Advanced Energy Materials, 2017, 7, 1700869.	19.5	144
257	Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700274.	19.5	118
258	Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700605.	21.0	39
259	Atomicâ€Scale CoO <i>_x</i> > Species in Metalâ€"Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	14.9	327
260	Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. Journal of Materials Chemistry A, 2017, 5, 25391-25400.	10.3	67
261	In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na–S Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24446-24450.	8.0	65
262	A 3D porous nitrogen-doped carbon-nanofiber-supported palladium composite as an efficient catalytic cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 1462-1471.	10.3	71
263	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	2.5	8
264	Nextâ€Generation Batteries. Advanced Materials, 2017, 29, 1705871.	21.0	31
265	Next Generation Batteries: Aim for the Future. Advanced Energy Materials, 2017, 7, 1703223.	19.5	63
266	Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries. Nanomaterials, 2017, 7, 368.	4.1	11
267	Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Research, 2017, 10, 4055-4081.	10.4	111
268	Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy, 2016, 27, 255-264.	16.0	204
269	Carbonâ€Coated Hierarchical SnO ₂ Hollow Spheres for Lithium Ion Batteries. Chemistry - A European Journal, 2016, 22, 5853-5857.	3.3	62
270	Graphiteâ€Nanoplateâ€Coated Bi ₂ S ₃ Composite with Highâ€Volume Energy Density and Excellent Cycle Life for Roomâ€Temperature Sodium–Sulfide Batteries. Chemistry - A European Journal, 2016, 22, 590-597.	3.3	48

#	Article	IF	CITATIONS
271	3-D structured SnO ₂ –polypyrrole nanotubes applied in Na-ion batteries. RSC Advances, 2016, 6, 103124-103131.	3.6	19
272	A microwave autoclave synthesized MnO2/graphene composite as a cathode material for lithium–oxygen batteries. Journal of Applied Electrochemistry, 2016, 46, 869-878.	2.9	22
273	LiFePO4/C nanocomposite synthesized by a novel carbothermal reduction method and its electrochemical performance. Ceramics International, 2016, 42, 11422-11428.	4.8	20
274	Comment on "Cycling Li-O ₂ batteries via LiOH formation and decomposition― Science, 2016, 352, 667-667.	12.6	44
275	Electrochemically active, novel layered m -ZnV 2 O 6 nanobelts for highly rechargeable Na-ion energy storage. Electrochimica Acta, 2016, 205, 62-69.	5.2	26
276	Understanding Performance Differences from Various Synthesis Methods: A Case Study of Spinel LiCr _{0.2} Ni _{0.4} Mn _{1.4} O ₄ Cathode Material. ACS Applied Materials & ACS ACS Applied Materials & ACS Applied Materials & ACS ACS APPLIED & ACS A	8.0	12
277	Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO ₂ Microfibers. Advanced Science, 2016, 3, 1600013.	11.2	47
278	Confined synthesis of graphene wrapped LiMn0.5Fe0.5PO4 composite via two step solution phase method as high performance cathode for Li-ion batteries. Journal of Power Sources, 2016, 329, 94-103.	7.8	35
279	Effects of Carbon Content on the Electrochemical Performances of MoS ₂ –C Nanocomposites for Li-Ion Batteries. ACS Applied Materials & Li-Ion Batteries.	8.0	46
280	Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. Journal of the American Chemical Society, 2016, 138, 16576-16579.	13.7	280
281	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 12822-12826.	13.8	394
282	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Angewandte Chemie, 2016, 128, 13014-13018.	2.0	268
283	Ultrafine Mn ₃ O ₄ Nanowires/Three-Dimensional Graphene/Single-Walled Carbon Nanotube Composites: Superior Electrocatalysts for Oxygen Reduction and Enhanced Mg/Air Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 27710-27719.	8.0	48
284	C < sub > 10 < / sub > H < sub > 4 < / sub > O < sub > 2 < / sub > S < sub > 2 < / sub > / graphene composite as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18409-18415.	10.3	35
285	Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries. Scientific Reports, 2016, 6, 23515.	3.3	34
286	Silicon/Mesoporous Carbon/Crystalline TiO ₂ Nanoparticles for Highly Stable Lithium Storage. ACS Nano, 2016, 10, 10524-10532.	14.6	230
287	Chemically Bonded Sn Nanoparticles Using the Crosslinked Epoxy Binder for High Energyâ€Density Li Ion Battery. Advanced Materials Interfaces, 2016, 3, 1600662.	3.7	17
288	Binderâ€Free and Carbonâ€Free 3D Porous Air Electrode for Liâ€O ₂ Batteries with High Efficiency, High Capacity, and Long Life. Small, 2016, 12, 3031-3038.	10.0	59

#	Article	IF	Citations
289	MoS ₂ with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 532-535.	6.0	70
290	Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). Journal of Materials Chemistry A, 2016, 4, 505-511.	10.3	106
291	Host Structural Stabilization of Li1.232Mn0.615Ni0.154O2 through K-Doping Attempt: toward Superior Electrochemical Performances. Electrochimica Acta, 2016, 188, 336-343.	5. 2	75
292	Improved cycling stability of lithium–sulphur batteries by enhancing the retention of active material with a sandwiched hydrothermally treated graphite film. RSC Advances, 2016, 6, 34131-34136.	3.6	10
293	Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 Porous Microspheres: Facile Designed Synthesis and Their Improved Electrochemical Performance. Electrochimica Acta, 2016, 191, 401-410.	5. 2	75
294	Ambient synthesis of a multifunctional 1D/2D hierarchical Agâ€"Ag ₂ S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm, 2016, 18, 930-937.	2.6	38
295	Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries. Electrochimica Acta, 2016, 190, 843-851.	5.2	33
296	Highly Ordered Single Crystalline Nanowire Array Assembled Three-Dimensional Nb ₃ O ₇ (OH) and Nb ₂ O ₅ Superstructures for Energy Storage and Conversion Applications. ACS Nano, 2016, 10, 507-514.	14.6	81
297	Effect of Size and Dimensionality on the Band Gap and Conductivity of InAs, PbS, Ge, and Bi2S3 Nanostructured Semiconductors. Current Nanoscience, 2016, 12, 324-329.	1.2	2
298	Lithium–Oxygen Batteries: Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 7012-7012.	21.0	2
299	Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries. Advanced Materials, 2015, 27, 6862-6869.	21.0	106
300	A hybrid gel–solid-state polymer electrolyte for long-life lithium oxygen batteries. Chemical Communications, 2015, 51, 8269-8272.	4.1	47
301	Rapid synthesis of \hat{l}_{\pm} -Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. Journal of Power Sources, 2015, 280, 107-113.	7.8	123
302	A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries. Scientific Reports, 2015, 5, 8012.	3.3	34
303	A new, cheap, and productive FeP anode material for sodium-ion batteries. Chemical Communications, 2015, 51, 3682-3685.	4.1	154
304	One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 4793-4798.	10.3	59
305	A Metalâ€Free, Freeâ€Standing, Macroporous Graphene@gâ€C ₃ N ₄ Composite Air Electrode for Highâ€Energy Lithium Oxygen Batteries. Small, 2015, 11, 2817-2824.	10.0	157
306	A B ₄ C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18395-18399.	10.3	22

#	Article	IF	Citations
307	A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19011-19017.	10.3	113
308	Cobalt phosphide as a new anode material for sodium storage. Journal of Power Sources, 2015, 294, 627-632.	7.8	158
309	Facile Method To Synthesize Na-Enriched Na _{1+<i>x</i>} FeFe(CN) ₆ Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 1997-2003.	6.7	163
310	Multifunctional conducing polymer coated Na1+MnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy, 2015, 13, 200-207.	16.0	165
311	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18, 133-142.	16.0	238
312	Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nature Communications, 2015, 6, 8689.	12.8	374
313	Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with superior high rate capability. Electrochimica Acta, 2015, 186, 253-261.	5.2	16
314	A novel shuttle-like Fe ₃ O ₄ –Co ₃ O ₄ self-assembling architecture with highly reversible lithium storage. RSC Advances, 2015, 5, 70527-70535.	3.6	9
315	Hierarchical structured LiMn 0.5 Fe 0.5 PO 4 spheres synthesized by template-engaged reaction as cathodes for high power Li-ion batteries. Electrochimica Acta, 2015, 178, 353-360.	5.2	35
316	Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Advances, 2015, 5, 80536-80541.	3.6	52
317	Nitrogen-doped carbon nanofibers with effectively encapsulated GeO ₂ nanocrystals for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 21699-21705.	10.3	39
318	Sn/SnO 2 @C composite nanofibers as advanced anode for lithium-ion batteries. Electrochimica Acta, 2015, 186, 271-276.	5.2	58
319	Improving the electrochemical performance of the LiNi _{0.5} Mn _{1.5} O ₄ spinel by polypyrrole coating as a cathode material for the lithium-ion battery. Journal of Materials Chemistry A, 2015, 3, 404-411.	10.3	130
320	Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. Journal of Power Sources, 2015, 275, 200-206.	7.8	84
321	Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. Journal of Power Sources, 2015, 275, 392-398.	7.8	48
322	Na ₃ V ₂ (PO ₄) ₃ particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 1005-1009.	10.3	92
323	Enhancing the High Rate Capability and Cycling Stability of LiMn ₂ O ₄ by Coating of Solid-State Electrolyte LiNbO ₃ . ACS Applied Materials & Amp; Interfaces, 2014, 6, 22155-22165.	8.0	7 5
324	Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochimica Acta, 2014, 133, 570-577.	5.2	36

#	Article	IF	Citations
325	Layered P2â€Na _{0.66} Fe _{0.5} Mn _{0.5} O ₂ Cathode Material for Rechargeable Sodiumâ€lon Batteries. ChemElectroChem, 2014, 1, 371-374.	3.4	52
326	Three-dimensional-network Li3V2(PO4)3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes. Journal of Power Sources, 2014, 246, 124-131.	7.8	48
327	A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4613.	10.3	37
328	Highly oriented LiFePO4 thin film electrodes via chemical solution deposition. Solid State Ionics, 2014, 268, 117-124.	2.7	5
329	Reversible sodium storage via conversion reaction of a MoS ₂ –C composite. Chemical Communications, 2014, 50, 10730-10733.	4.1	105
330	Porous Ni0.5Zn0.5Fe2O4 Nanospheres: Synthesis, Characterization, and Application for Lithium Storage. Electrochimica Acta, 2014, 147, 143-150.	5.2	16
331	Sn _{4+<i>x</i>} P ₃ @ Amorphous Snâ€P Composites as Anodes for Sodiumâ€ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Advanced Materials, 2014, 26, 4037-4042.	21.0	298
332	Study on Vanadium Substitution to Iron in Li2FeP2O7 as Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2014, 141, 195-202.	5.2	12
333	Highâ€Performance Sodiumâ€lon Batteries and Sodiumâ€lon Pseudocapacitors Based on MoS ₂ /Graphene Composites. Chemistry - A European Journal, 2014, 20, 9607-9612.	3.3	192
334	Ultrafine SnO ₂ nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. Journal of Materials Chemistry A, 2014, 2, 529-534.	10.3	297
335	Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 11683.	10.3	94
336	Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014, 16, 20347-20359.	2.8	347
337	Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 4927.	10.3	72
338	Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries. Scientific Reports, 2014, 4, 6095.	3.3	63
339	In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 7030.	3.3	16
340	A facile route to synthesize transition metal oxide/reduced graphene oxide composites and their lithium storage performance. RSC Advances, 2013, 3, 16597.	3.6	61
341	LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013, 101, 151-157.	5.2	37
342	In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. Journal of Power Sources, 2013, 244, 684-689.	7.8	63

#	Article	IF	CITATIONS
343	Hollow Structured Li ₃ VO ₄ Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4715-4720.	9.1	303
344	The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources, 2013, 225, 172-178.	7.8	202
345	Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochimica Acta, 2013, 108, 820-826.	5.2	40
346	The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems. Journal of Power Sources, 2013, 244, 240-245.	7.8	32
347	Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity. Electrochimica Acta, 2013, 93, 213-221.	5.2	93
348	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	19.5	282
349	Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013, 57, 202-208.	10.3	491
350	Lithium rich and deficient effects in LixCoPO4 (x =0.90, 0.95, 1, 1.05) as cathode material for lithium-ion batteries. Electrochimica Acta, 2013, 88, 865-870.	5.2	10
351	A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode. Electrochemistry Communications, 2013, 31, 35-38.	4.7	24
352	Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Letters, 2013, 13, 5480-5484.	9.1	390
353	CuS Nanoflakes, Microspheres, Microflowers, and Nanowires: Synthesis and Lithium Storage Properties. Journal of Nanoscience and Nanotechnology, 2013, 13, 1309-1316.	0.9	17
354	Novel Supercapcitor-Battery Energy Storage System With Hybrid Electrolyte for Stationary Application. ECS Meeting Abstracts, 2013 , , .	0.0	0
355	One-Step Spray Pyrolysis Synthesized CuO-Carbon Composite Combined with Carboxymethyl Cellulose Binder as Anode for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 1314-1317.	0.9	4
356	Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. Journal of Materials Chemistry, 2012, 22, 16465.	6.7	206
357	Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Liâe"S batteries with excellent lithium storage performance. Journal of Materials Chemistry, 2012, 22, 4744.	6.7	195
358	Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. Journal of Power Sources, 2012, 220, 47-53.	7.8	60
359	Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon, 2012, 50, 1289-1297.	10.3	179
360	Irradiation Si on Carbon Nanotube Paper as a Flexible Anode Material for Lithium-Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 169-172.	0.4	0

#	Article	IF	CITATIONS
361	Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research, 2011, 26, 860-866.	2.6	36
362	Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Transactions, 2011, 40, 12801.	3.3	62
363	Rapid Synthesis of Li ₄ Ti ₅ O ₁₂ Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. Journal of Physical Chemistry C, 2011, 115, 16220-16227.	3.1	368
364	Nanocrystalline porous α-LiFeO ₂ â€"C compositeâ€"an environmentally friendly cathode for the lithium-ion battery. Energy and Environmental Science, 2011, 4, 952-957.	30.8	61
365	Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries. Electrochimica Acta, 2011, 58, 456-462.	5. 2	65
366	The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery. Journal of Applied Electrochemistry, 2011, 41, 1261-1267.	2.9	17
367	Hollow hematite nanosphere/carbon nanotube composite: mass production and its high-rate lithium storage properties. Nanotechnology, 2011, 22, 265401.	2.6	30
368	Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics, 2010, 180, 1646-1651.	2.7	144
369	Basic molten salt process—A new route for synthesis of nanocrystalline Li4Ti5O12–TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3–LiOH–Li2O2. Journal of Power Sources, 2010, 195, 4297-4303.	7.8	85
370	Silver-coated TiO2 nanostructured anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 571-578.	2.5	40
371	Hydrothermal synthesis of nanostructured MnO2 under magnetic field for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2010, 14, 1743-1747.	2.5	8
372	Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 1415-1419.	2.9	29
373	Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1467-1470.	4.7	234
374	SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2010, 56, 314-320.	5.2	107
375	Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2010, 12, 303-306.	4.7	402
376	Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 15862-15867.	3.1	128
377	High-surface-area \hat{l} ±-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. Journal of Materials Chemistry, 2010, 20, 2092.	6.7	228
378	Electrochemical Deposition of Porous VO _x and MnO ₂ Nanowires on Stainless Steel Mesh for Flexible Supercapacitors. Advanced Science Letters, 2010, 3, 295-298.	0.2	10

#	Article	IF	Citations
379	Self-Oriented Ca[sub 3]Co[sub 4]O[sub 9] Thin Film as an Anode Material for Enhanced Cycling Stability of Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A176.	2.2	10
380	Highly flexible and bendable free-standing thin film polymer for battery application. Materials Letters, 2009, 63, 2352-2354.	2.6	40
381	A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochimica Acta, 2009, 54, 7519-7524.	5.2	80
382	SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage. Electrochemistry Communications, 2009, 11, 242-246.	4.7	56
383	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	10.3	306
384	Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. Journal of Power Sources, 2008, 182, 359-364.	7.8	118
385	Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008, 46, 229-235.	10.3	361
386	Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.	2.7	71
387	Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochemistry Communications, 2008, 10, 1724-1727.	4.7	419
388	Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10, 1781-1784.	4.7	86
389	High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V ₂ O ₅ Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte. Chemistry of Materials, 2008, 20, 7044-7051.	6.7	205
390	Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres. Journal of Alloys and Compounds, 2008, 456, 339-343.	5 . 5	47
391	Electrochemical Deposition of Porous Co(OH)[sub 2] Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors. Journal of the Electrochemical Society, 2008, 155, A926.	2.9	64
392	Electrodeposition synthesis and electrochemical properties of nanostructured \hat{l}^3 -MnO2 films. Journal of Power Sources, 2006, 162, 727-734.	7.8	253
393	Electrochemical Deposition of Ni(OH)2 and Fe-Doped Ni(OH)2 Tubes. European Journal of Inorganic Chemistry, 2005, 2005, 4035-4039.	2.0	59
394	Synthesis of TiSe2 Nanotubes/Nanowires. Advanced Materials, 2003, 15, 1379-1382.	21.0	22
395	Challenges and Applications of Flexible Sodium Ion Batteries. , 0, 1, 1-24.		0
396	Expanding the ReS ₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS Applied Materials & Diterfaces, O, , .	8.0	9