Nobukazu Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733465/publications.pdf

Version: 2024-02-01

186265 2,632 51 28 citations h-index papers

46 g-index 73 73 73 1826 docs citations times ranked citing authors all docs

223800

#	Article	IF	CITATIONS
1	Aerobic Copper(II)-catalyzed synthesis of \hat{l}^2 -hydroxysulfides and selenides from alkenes with disulfides and diselenides. Tetrahedron, 2022, 110, 132689.	1.9	4
2	Metal Catalyzed-Introduction of Sulfur-Substituents to Unsaturated Carbon-Carbon Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 322-330.	0.1	0
3	Zinc-catalyzed regioselective addition of alkyl thiols to alkenes via anion or radical reactions. Arkivoc, 2021, 2021, 125-137.	0.5	3
4	BrÃ, nsted Acid-Assisted Zinc-Catalyzed Markovnikov-Type Hydrothiolation of Alkenes Using Thiols. Journal of Organic Chemistry, 2020, 85, 6528-6534.	3.2	15
5	Dihydrosulfenylation of Alkynes with Thiols Using a Nickel Catalyst through a Radical Process. Asian Journal of Organic Chemistry, 2019, 8, 1468-1471.	2.7	9
6	Zn-catalyzed dihydrosulfenylation of alkynes using thiols. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 739-741.	1.6	3
7	Cobalt-catalyzed stereoselective iodosulfonylation and diiodination of alkynes via oxidation of potassium iodide in air. Tetrahedron, 2018, 74, 1454-1460.	1.9	22
8	Zinc-Catalyzed Synthesis of Dithioacetals through Double Hydrosulfenylation of Alkynes by Thiols. Synlett, 2018, 29, 2712-2716.	1.8	7
9	Aerobic Copperâ€Catalyzed Acetoxysulfenylation and Hydrosulfenylation of Alkenes with Thiols. ChemistrySelect, 2018, 3, 6209-6213.	1.5	6
10	Unsymmetrical disulfide and sulfenamide synthesis via reactions of thiosulfonates with thiols or amines. Tetrahedron, 2017, 73, 2030-2035.	1.9	41
11	Copperâ€Catalyzed Oxidative Synthesis of Sulfinamides Using Thiols or Disulfides with Amines. European Journal of Organic Chemistry, 2016, 2016, 2157-2162.	2.4	34
12	Diarylation of chalcogen elements using arylboronic acids via copper- or palladium-catalyzed oxidative coupling. Tetrahedron, 2016, 72, 5818-5823.	1.9	23
13	Oxidative Coupling of Dichalcogenides with Sodium Sulfinates via Copper-Catalyzed Cleavage of S–S and Se–Se Bonds. Journal of Organic Chemistry, 2015, 80, 1764-1770.	3.2	67
14	Aerobic Nickel-Catalyzed Hydroxysulfonylation of Alkenes Using Sodium Sulfinates. Journal of Organic Chemistry, 2015, 80, 7797-7802.	3.2	76
15	Transition Metal-Catalyzed Reaction of Unsaturated Carbon-Carbon Bonds with Sodium Sulfinates under Oxidative Conditions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 987-994.	0.1	O
16	Copper atalyzed Synthesis of Thiosulfonates by Oxidative Coupling of Thiols with Sodium Sulfinates. European Journal of Organic Chemistry, 2014, 2014, 5691-5694.	2.4	44
17	Aerobic copper-catalyzed synthesis of (E)-alkenyl sulfones and (E)- \hat{l}^2 -halo-alkenyl sulfones via addition of sodium sulfinates to alkynes. Tetrahedron, 2014, 70, 1984-1990.	1.9	92
18	Aerobic Palladium-Catalyzed Arylation of Alkenes Using Sodium Sulfinates. Synlett, 2013, 24, 2571-2574.	1.8	16

#	Article	IF	CITATIONS
19	Copper-Catalyzed Oxidative Hydrosulfonylation of Alkynes Using Sodium Sulfinates in Air. Synlett, 2012, 23, 1245-1249.	1.8	54
20	Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium. Tetrahedron, 2012, 68, 10510-10515.	1.9	56
21	Stereoselective Synthesis of (E)-Alkenyl Sulfones from Alkenes or Alkynes via Copper-Catalyzed Oxidation of Sodium Sulfinates. Synlett, 2011, 2011, 1308-1312.	1.8	89
22	Copperâ€Catalyzed Formation of Sulfur–Nitrogen Bonds by Dehydrocoupling of Thiols with Amines. European Journal of Organic Chemistry, 2010, 2010, 2670-2673.	2.4	83
23	Copper-catalyzed synthesis of \hat{l}^2 -haloalkenyl chalcogenides by addition of dichalcogenides to internal alkynes and its application to synthesis of (Z)-tamoxifen. Tetrahedron, 2009, 65, 2782-2790.	1.9	68
24	Copper-Catalyzed Addition of Halide and Sulfide Groups to Alkynes Utilizing Disulfides with Tetrabutylammonium Halides. Synlett, 2008, 2008, 849-852.	1.8	32
25	Transition-Metal-catalyzed Synthesis of Organomonochalcogenide Compounds by Cleavage of the Dichalcogenide Bond. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 965-973.	0.1	1
26	Copper-Catalyzed Synthesis of Sulfenamides Utilizing Diaryl Disulfides with Alkyl Amines. Synlett, 2007, 2007, 1917-1920.	1.8	44
27	Convenient Synthesis of Unsymmetrical Organochalcogenides Using Organoboronic Acids with Dichalcogenides via Cleavage of the Sâ^'S, Seâ^'Se, or Teâ^'Te Bond by a Copper Catalyst. Journal of Organic Chemistry, 2007, 72, 1241-1245.	3.2	262
28	Copper-Catalyzed 1,2-Hydroxysulfenylation of Alkene Using Disulfide via Cleavage of the Sâ^'S Bond. Journal of Organic Chemistry, 2006, 71, 7874-7876.	3. 2	119
29	Aryl- or Alkylation of Diaryl Disulfides Using Organoboronic Acids and a Copper Catalyst. Synlett, 2006, 2006, 1351-1354.	1.8	76
30	Synthesis of Optically Active .BETADiols, Diamines and Amino Alcohols by Reductive Coupling of Planar Chiral Transition Metal Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 724-734.	0.1	2
31	Alkyl- or Arylthiolation of Aryl Iodide via Cleavage of the S?S Bond of Disulfide Compound by Nickel Catalyst and Zinc ChemInform, 2005, 36, no.	0.0	0
32	Mono- or Dichalcogenation of Aryl Iodide with Sulfur or Selenium by Copper Catalyst and Aluminum ChemInform, 2005, 36, no.	0.0	0
33	Mono- or Dichalcogenation of Aryl Iodide with Sulfur or Selenium by Copper Catalyst and Aluminum. Synlett, 2005, 2005, 1687-1690.	1.8	64
34	Magnesium-Induced Copper-Catalyzed Synthesis of Unsymmetrical Diaryl Chalcogenide Compounds from Aryl Iodide via Cleavage of the Seâ€"Se or Sâ€"S Bond ChemInform, 2004, 35, no.	0.0	1
35	Asymmetric synthesis of \hat{l}^2 -amino alcohol by reductive cross-coupling of planar chiral ferrocenecarboxaldehyde with N-tosyl ferrocenylideneamine, and its application to asymmetric reaction. Inorganica Chimica Acta, 2004, 357, 1829-1835.	2.4	12
36	Alkyl- or Arylthiolation of Aryl Iodide via Cleavage of the Sâ^'S Bond of Disulfide Compound by Nickel Catalyst and Zinc. Journal of Organic Chemistry, 2004, 69, 6904-6906.	3.2	201

3

#	Article	IF	CITATIONS
37	Magnesium-Induced Copper-Catalyzed Synthesis of Unsymmetrical Diaryl Chalcogenide Compounds from Aryl Iodide via Cleavage of the Seâ´'Se or Sâ´'S Bond. Journal of Organic Chemistry, 2004, 69, 915-920.	3.2	217
38	Copper-Catalyzed Synthesis of Diaryl Selenide from Aryl Iodide and Diphenyl Diselenide Using Magnesium Metal ChemInform, 2003, 34, no.	0.0	0
39	Asymmetric Synthesis of anti- and syn-β-Amino Alcohols by Reductive Cross-Coupling of Transition Metal-Coordinated Planar Chiral Arylaldehydes with Aldimines ChemInform, 2003, 34, no.	0.0	0
40	Copper-Catalyzed Synthesisof Diaryl Selenide from Aryl Iodide and Diphenyl Diselenide UsingMagnesium Metal. Synlett, 2003, 2003, 0829-0832.	1.8	49
41	Asymmetric Synthesis of Î ² -Amino Alcohols by Reductive Cross-Coupling of Benzylideneamine with Planar Chiral Benzaldehydes. Organic Letters, 2002, 4, 835-838.	4.6	31
42	Asymmetric Synthesis ofanti- andsyn-β-Amino Alcohols by Reductive Cross-Coupling of Transition Metal-Coordinated Planar Chiral Arylaldehydes with Aldimines. Journal of Organic Chemistry, 2002, 67, 9227-9237.	3.2	26
43	Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids:Â 1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate. Journal of the American Chemical Society, 2001, 123, 9918-9919.	13.7	318
44	Asymmetric Synthesis of Axially Chiral Anilides by Enantiotopic Lithiation of Tricarbonyl (N-methyl-N-acyl-2,6-dimethylanilide) chromium Complex. Organic Letters, 2000, 2, 1907-1910.	4.6	64
45	Asymmetric Synthesis of β-Amino Alcohols by Cross-Pinacol Coupling of Planar Chiral Ferrocenecarboxaldehydes with Imines. Journal of the American Chemical Society, 2000, 122, 8301-8302.	13.7	51
46	Enantiomerically Pure Cyclic trans-1,2-Diols, Diamines, and Amino Alcohols by Intramolecular Pinacol Coupling of Planar Chiral Mono-Cr(CO)3 Complexes of Biaryls. Angewandte Chemie - International Edition, 1999, 38, 1232-1235.	13.8	60
47	Stereoselective pinacol coupling of planar chiral (benzaldehyde)Cr(CO)3, (benzaldimine)Cr(CO)3, ferrocenecarboxaldehyde and (dienal)Fe(CO)3 complexes with samarium diiodide. Tetrahedron, 1998, 54, 12775-12788.	1.9	53
48	Planar chiral C2-symmetric bisferrocenes: Stereoselective pinacol coupling of \hat{l}_{\pm} -substituted ferrocenecarboxaldehydes. Tetrahedron Letters, 1998, 39, 5385-5388.	1.4	25
49	Synthesis of Enantiomerically Pure 1,2-Diamines by Reductive Coupling of Tricarbony(benzaldimine)chromium Complexes. Synlett, 1997, 1, 51-53.	1.8	17
50	(Arene)tricarbonylchromium complexes in radical reactions: Samarium(II) iodide-mediated coupling of chromium-complexed benzaldehyde or acetophenone with methyl acrylate. Tetrahedron Letters, 1997, 38, 7199-7202.	1.4	34
51	Highly threo-Selective Pinacol Coupling of Tricarbonylchromium Complexes of Benzaldehyde with Samarium(II) Diiodide. Journal of Organic Chemistry, 1996, 61, 6088-6089.	3.2	49