Anja Thoe Fuglsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review on natural compounds interacting with the plant plasma membrane H ⁺ â€ATPase and their potential as biologicals in agriculture. Journal of Integrative Plant Biology, 2022, 64, 268-286.	8.5	15
2	Corrigendum to: Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. Plant Physiology, 2022, 188, 2379-2381.	4.8	4
3	Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. Plant Physiology, 2021, 187, 1856-1875.	4.8	29
4	JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers, 2021, 13, 280.	3.7	17
5	The PSY Peptide Family—Expression, Modification and Physiological Implications. Genes, 2021, 12, 218.	2.4	18
6	Tenuazonic acid fromStemphylium lotiinhibits the plant plasma membrane H+â€ATPase by a mechanism involving the Câ€ŧerminal regulatory domain. New Phytologist, 2020, 226, 770-784.	7.3	24
7	Live Imaging of Phosphate Levels in Arabidopsis Root Cells Expressing a FRET-Based Phosphate Sensor. Plants, 2020, 9, 1310.	3.5	3
8	Evidence for multiple receptors mediating RALFâ€ŧriggered Ca ²⁺ signaling and proton pump inhibition. Plant Journal, 2020, 104, 433-446.	5.7	40
9	LEGOâ€Inspired Drug Design: Unveiling a Class of Benzo[<i>d</i>]thiazoles Containing a 3,4â€Dihydroxyphenyl Moiety as Plasma Membrane H ⁺ â€ATPase Inhibitors. ChemMedChem, 2018, 13, 37-47.	3.2	9
10	Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans. Frontiers in Microbiology, 2018, 9, 502.	3.5	17
11	Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS ONE, 2018, 13, e0188620.	2.5	20
12	Identification of Antifungal H ⁺ -ATPase Inhibitors with Effect on Plasma Membrane Potential. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	37
13	Fusaric acid and analogues as Gram-negative bacterial quorum sensing inhibitors. European Journal of Medicinal Chemistry, 2017, 126, 1011-1020.	5.5	53
14	Activation of the LRR Receptor-Like Kinase PSY1R Requires Transphosphorylation of Residues in the Activation Loop. Frontiers in Plant Science, 2017, 8, 2005.	3.6	13
15	Cell-Type-Specific H ⁺ -ATPase Activity in Root Tissues Enables K ⁺ Retention and Mediates Acclimation of Barley (<i>Hordeum vulgare</i>) to Salinity Stress. Plant Physiology, 2016, 172, 2445-2458.	4.8	158
16	Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis. BMC Plant Biology, 2016, 16, 2.	3.6	19
17	Plasma Membrane H + -ATPase Regulation in the Center of Plant Physiology. Molecular Plant, 2016, 9, 323-337.	8.3	391
18	Measuring H+ Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems. Methods in Molecular Biology, 2016, 1377, 171-180.	0.9	2

Anja Thoe Fuglsang

#	Article	IF	CITATIONS
19	On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 2016, 67, 1015-1031.	4.8	135
20	Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life. PLoS ONE, 2016, 11, e0163260.	2.5	17
21	Specific Activation of the Plant P-type Plasma Membrane H+-ATPase by Lysophospholipids Depends on the Autoinhibitory N- and C-terminal Domains. Journal of Biological Chemistry, 2015, 290, 16281-16291.	3.4	33
22	The plasma membrane H ⁺ â€ <scp>ATPase AHA2</scp> contributes to the root architecture in response to different nitrogen supply. Physiologia Plantarum, 2015, 154, 270-282.	5.2	46
23	Abstract P5-07-08: Identification and characterization of a new TIMP-1 binding protein. , 2015, , .		3
24	Receptor kinaseâ€mediated control of primary active proton pumping at the plasma membrane. Plant Journal, 2014, 80, 951-964.	5.7	112
25	Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant. BMC Genomics, 2014, 15, 441.	2.8	17
26	Polyamines Depolarize the Membrane and Initiate a Cross-Talk Between Plasma Membrane Ca2+ and H+ Pumps. Biophysical Journal, 2014, 106, 586a.	0.5	1
27	Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. Journal of Experimental Botany, 2014, 65, 2463-2472.	4.8	82
28	Active Plasma Membrane P-type H+-ATPase Reconstituted into Nanodiscs Is a Monomer. Journal of Biological Chemistry, 2013, 288, 26419-26429.	3.4	18
29	Isolation of Monodisperse Nanodisc-Reconstituted Membrane Proteins Using Free Flow Electrophoresis. Analytical Chemistry, 2013, 85, 3497-3500.	6.5	19
30	Perspectives for using genetically encoded fluorescent biosensors in plants. Frontiers in Plant Science, 2013, 4, 234.	3.6	23
31	Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. Journal of Experimental Botany, 2012, 63, 3207-3218.	4.8	143
32	Phosphosite Mapping of P-type Plasma Membrane H+-ATPase in Homologous and Heterologous Environments. Journal of Biological Chemistry, 2012, 287, 4904-4913.	3.4	60
33	Measurements of intracellularATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integrative Biology (United Kingdom), 2012, 4, 99-107.	1.3	25
34	Interaction of barley powdery mildew effector candidate <scp>CSEP0055</scp> with the defence protein <scp>PR17c</scp> . Molecular Plant Pathology, 2012, 13, 1110-1119.	4.2	115
35	Purification of Plant Plasma Membranes by Two-Phase Partitioning and Measurement of H+ Pumping. , 2012, 913, 217-223.		12
36	Plant Proton Pumps: Regulatory Circuits Involving H+-ATPase and H+-PPase. Signaling and Communication in Plants, 2011, , 39-64.	0.7	22

Anja Thoe Fuglsang

#	Article	lF	CITATIONS
37	Plasma Membrane ATPases. Plant Cell Monographs, 2011, , 177-192.	0.4	8
38	Plasma membrane Ca ²⁺ transporters mediate virusâ€induced acquired resistance to oxidative stress. Plant, Cell and Environment, 2011, 34, 406-417.	5.7	41
39	Endomembrane Ca ²⁺ -ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling and Behavior, 2011, 6, 1053-1056.	2.4	16
40	Phosphorylation of SOS3-Like Calcium-Binding Proteins by Their Interacting SOS2-Like Protein Kinases Is a Common Regulatory Mechanism in Arabidopsis Â. Plant Physiology, 2011, 156, 2235-2243.	4.8	116
41	The <i>Arabidopsis</i> Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the PKS5 Kinase Â. Plant Cell, 2010, 22, 1313-1332.	6.6	200
42	RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack. PLoS Biology, 2009, 7, e1000139.	5.6	240
43	Plasma membrane H ⁺ â€ATPaseâ€dependent citrate exudation from cluster roots of phosphateâ€deficient white lupin. Plant, Cell and Environment, 2009, 32, 465-475.	5.7	99
44	Manganese Efficiency in Barley: Identification and Characterization of the Metal Ion Transporter HvIRT1. Plant Physiology, 2008, 148, 455-466.	4.8	182
45	Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley. Plant Physiology, 2007, 145, 1714-1725.	4.8	458
46	Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis. Molecular and Cellular Proteomics, 2007, 6, 1711-1726.	3.8	251
47	Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with 14-3-3 Protein. Plant Cell, 2007, 19, 1617-1634.	6.6	388
48	The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65, 137-150.	3.9	136
49	Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein. Physiologia Plantarum, 2006, 128, 334-340.	5.2	24
50	Regulation of Plant Plasma Membrane H+- and Ca2+-ATPases by Terminal Domains. Journal of Bioenergetics and Biomembranes, 2005, 37, 369-374.	2.3	43
51	The Binding Site for Regulatory 14-3-3 Protein in Plant Plasma Membrane H+-ATPase. Journal of Biological Chemistry, 2003, 278, 42266-42272.	3.4	96
52	Phosphorylation-independent interaction between 14-3-3 protein and the plant plasma membrane H+-ATPase. Biochemical Society Transactions, 2002, 30, 411-415.	3.4	21
53	Binding of 14-3-3 Protein to the Plasma Membrane H+-ATPase AHA2 Involves the Three C-terminal Residues Tyr946-Thr-Val and Requires Phosphorylation of Thr947. Journal of Biological Chemistry, 1999, 274, 36774-36780.	3.4	311

#	Article	IF	CITATIONS
55	Deciphering the role of 14-3-3 proteins. Experimental Biology Online, 1998, 3, 1-17.	1.0	14
56	Summary. Plant Journal, 1998, 13, 661-671.	5.7	209
57	The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase Plant Cell, 1997, 9, 1805-1814.	6.6	218
58	The 14-3-3 Protein Interacts Directly with the C-Terminal Region of the Plant Plasma Membrane H + -ATPase. Plant Cell, 1997, 9, 1805.	6.6	113
59	P-Type H+- and Ca2+-ATPases in Plant Cells. Annals of the New York Academy of Sciences, 1997, 834, 77-87.	3.8	12