Yuanhong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733163/publications.pdf

Version: 2024-02-01

90 papers

4,471 citations

94269 37 h-index 63 g-index

96 all docs 96 docs citations

96 times ranked 3240 citing authors

#	Article	IF	CITATIONS
1	Gold-Catalyzed Multicomponent Synthesis of Aminoindolizines from Aldehydes, Amines, and Alkynes under Solvent-Free Conditions or in Water. Organic Letters, 2007, 9, 4323-4326.	2.4	287
2	Gold-Catalyzed Cyclization of (Z)-2-En-4-yn-1-ols:  Highly Efficient Synthesis of Fully Substituted Dihydrofurans and Furans. Organic Letters, 2005, 7, 5409-5412.	2.4	267
3	Cleavage of a Carbonâ^'Carbon Triple Bond via Gold-Catalyzed Cascade Cyclization/Oxidative Cleavage Reactions of (Z)-Enynols with Molecular Oxygen. Journal of the American Chemical Society, 2006, 128, 11332-11333.	6.6	193
4	Highly Efficient Synthesis of Functionalized Indolizines and Indolizinones by Copper-Catalyzed Cycloisomerizations of Propargylic Pyridines. Journal of Organic Chemistry, 2007, 72, 7783-7786.	1.7	134
5	Electrophilic Cyclization of 2-(1-Alkynyl)-2-alken-1-ones Using the I2/K3PO4System:  An Efficient Synthesis of Highly Substituted Iodofurans. Organic Letters, 2005, 7, 4609-4611.	2.4	132
6	Gold-Catalyzed Highly Efficient Access to 3(2H)-Furanones from 2-Oxo-3-butynoates and Related Compounds. Organic Letters, 2006, 8, 3445-3448.	2.4	123
7	Goldâ€Catalyzed Intermolecular Reactions of (<i>Z</i>)â€Enynols with Indoles for the Construction of Dihydrocyclohepta[<i>b</i>)indole Skeletons through a Cascade Friedel–Crafts/Hydroarylation Sequence. Advanced Synthesis and Catalysis, 2009, 351, 1517-1522.	2.1	118
8	Goldâ€Catalyzed Oxidative Ring Expansion of 2â€Alkynylâ€1,2â€Dihydropyridines or â€quinolines: Highly Efficient Synthesis of Functionalized Azepine or Benzazepine Scaffolds. Angewandte Chemie - International Edition, 2015, 54, 1200-1204.	t 7.2	102
9	Dioxazoles, a new mild nitrene transfer reagent in gold catalysis: highly efficient synthesis of functionalized oxazoles. Chemical Communications, 2016, 52, 6324-6327.	2.2	99
10	An Efficient Domino Approach for the Synthesis of Multisubstituted Pyrroles <i>via</i> Gold/Silverâ€Catalyzed Amination/Cycloisomerization of (<i>Z</i>)â€2â€Enâ€4â€ynâ€1â€ols. Advanced Synthesi Catalysis, 2009, 351, 129-134.	s2annd	98
11	General and Direct Synthesis of 3-Aminoindolizines and Their Analogues via Pd/Cu-Catalyzed Sequential Cross-Coupling/Cycloisomerization Reactions. Organic Letters, 2007, 9, 409-412.	2.4	96
12	Gold-Catalyzed Cascade Friedelâ^'Crafts/Furanâ^'Alkyne Cycloisomerizations for the Highly Efficient Synthesis of Arylated (<i>Z</i>)-Enones or -Enals. Organic Letters, 2009, 11, 3838-3841.	2.4	90
13	General and Mild Nickel-Catalyzed Cyanation of Aryl/Heteroaryl Chlorides with Zn(CN)2: Key Roles of DMAP. Organic Letters, 2017, 19, 2118-2121.	2.4	90
14	Goldâ€Catalyzed Oxidative Rearrangement Involving 1,2â€Acyl Migration: Efficient Synthesis of Functionalized Dihydroâ€Î³â€Carbolines from αâ€(2â€Indolyl) Propargylic Alcohols and Imines. Angewandte Chemie - International Edition, 2013, 52, 13302-13306.	7.2	87
15	Synthesis of Multiple-Substituted Pyrroles via Gold(I)-Catalyzed Hydroamination/Cyclization Cascade. Organic Letters, 2015, 17, 2984-2987.	2.4	85
16	Nickel-catalyzed cyclization of alkyne-nitriles with organoboronic acids involving anti-carbometalation of alkynes. Chemical Science, 2016, 7, 5815-5820.	3.7	80
17	Goldâ€Catalyzed Cadiot–Chodkiewiczâ€type Crossâ€Coupling of Terminal Alkynes with Alkynyl Hypervalent lodine Reagents: Highly Selective Synthesis of Unsymmetrical 1,3â€Diynes. Angewandte Chemie - International Edition, 2017, 56, 6994-6998.	7.2	80
18	Gold(I)â€Catalyzed 1,2â€Acyloxy Migration/[3+2] Cycloaddition of 1,6â€Diynes with an Ynamide Propargyl Ester Moiety: Highly Efficient Synthesis of Functionalized Cyclopenta[<i>b</i> indoles. Chemistry - A European Journal, 2015, 21, 1009-1013.	1.7	79

#	Article	IF	CITATIONS
19	Nickel-Catalyzed Highly Regioselective Hydrocyanation of Terminal Alkynes with Zn(CN) < sub>2 < /sub> Using Water as the Hydrogen Source. Journal of the American Chemical Society, 2018, 140, 7385-7389.	6.6	76
20	Goldâ€Catalyzed Cascade Friedel–Crafts/Furanâ€Yne Cyclization/Heteroenyne Metathesis for the Highly Efficient Construction of Phenanthrene Derivatives. Advanced Synthesis and Catalysis, 2011, 353, 392-400.	2.1	75
21	One-Pot Synthesis of Indole-Fused Scaffolds via Gold-Catalyzed Tandem Annulation Reactions of 1,2-Bis(alkynyl)-2-en-1-ones with Indoles. Journal of Organic Chemistry, 2011, 76, 9175-9181.	1.7	74
22	Gold-Catalyzed Formal [3 + 2] Cycloaddition of Ynamides with 4,5-Dihydro-1,2,4-oxadiazoles: Synthesis of Functionalized 4-Aminoimidazoles. Organic Letters, 2017, 19, 3307-3310.	2.4	74
23	Gold-Catalyzed Deacylative Cycloisomerization Reactions of 3-Acylindole/ynes: A New Approach for Carbazole Synthesis. Organic Letters, 2011, 13, 3786-3789.	2.4	68
24	Synthesis of 2-Alkenylquinoline by Reductive Olefination of Quinoline <i>N</i> -Oxide under Metal-Free Conditions. Organic Letters, 2016, 18, 1796-1799.	2.4	68
25	Gold-Catalyzed Approach to Multisubstituted Fulvenes via Cycloisomerization of Furan/Ynes. Journal of Organic Chemistry, 2011, 76, 5274-5282.	1.7	66
26	Synthesis of \hat{l} - and \hat{l} ±-Carbolines via Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of Functionalized Alkyne-Nitriles with Alkynes. Organic Letters, 2017, 19, 110-113.	2.4	63
27	Goldâ€Catalyzed Cyclization of 1,6â€Diyneâ€4â€enâ€3â€ols: Stannyl Transfer from 2â€Tributylstannylfuran Thro Au/Sn Transmetalation. Angewandte Chemie - International Edition, 2012, 51, 6181-6186.	ugh 7.2	62
28	Gold-Catalyzed Synthesis of Tropone and Its Analogues via Oxidative Ring Expansion of Alkynyl Quinols. Organic Letters, 2015, 17, 5926-5929.	2.4	53
29	A Facile Zr-Mediated Approach to (Z)-Enynols and Its Application to Regio- and Stereoselective Synthesis of Fully Substituted Dihydrofurans. Journal of Organic Chemistry, 2005, 70, 6999-7002.	1.7	52
30	Gold(I)-Catalyzed Cascade Hydroarylation/Cycloaromatization to Indolizines via Pyridine Ring Construction. Journal of Organic Chemistry, 2016, 81, 3688-3699.	1.7	50
31	Highly Regio- and Stereoselective Synthesis of Tetrasubstituted Cyclobutenes via Cyclodimerization of Alkynes Mediated by Zirconium. Journal of the American Chemical Society, 2005, 127, 3662-3663.	6.6	48
32	Silver-catalyzed cascade cyclization–stannylation of o-alkynylaniline derivatives with 2-tributylstannylfuran: an efficient synthesis of (3-indolyl)stannanes. Chemical Communications, 2013, 49, 11794.	2.2	48
33	Palladium-catalyzed highly efficient synthesis of functionalized indolizines via cross-coupling/cycloisomerization cascade. Chemical Communications, 2015, 51, 6633-6636.	2.2	48
34	Gold(I)-Catalyzed Formal Intramolecular Dehydro-Diels–Alder Reaction of Ynamide-ynes: Synthesis of Functionalized Benzo[b]carbazoles. Organic Letters, 2018, 20, 3273-3277.	2.4	48
35	Gold-Catalyzed Furan/Yne Cyclizations for the Regiodefined Assembly of Multisubstituted Protected 1-Naphthols. Journal of Organic Chemistry, 2012, 77, 1915-1921.	1.7	45
36	Selective $[5+1]$ and $[5+2]$ Cycloaddition of Ynamides or Propargyl Esters with Benzo $[\langle i \rangle d \langle i \rangle]$ isoxazoles via Gold Catalysis. Journal of Organic Chemistry, 2018, 83, 15470-15485.	1.7	43

#	Article	IF	CITATIONS
37	Gold(I)â€Catalyzed Furanâ€yne Cyclizations Involving 1,2â€Rearrangement: Efficient Synthesis of Functionalized 1â€Naphthols and Its Application to the Synthesis of Wailupemycinâ€G. Chemistry - A European Journal, 2014, 20, 12015-12019.	1.7	42
38	Nickel-Catalyzed Cyanation of Phenol Derivatives with Zn(CN) ₂ Involving C–O Bond Cleavage. Journal of Organic Chemistry, 2018, 83, 14036-14048.	1.7	41
39	Gold-Catalyzed Oxidative Cyclizations of {o-(Alkynyl)phenyl propargyl} Silyl Ether Derivatives Involving 1,2-Enynyl Migration: Synthesis of Functionalized 1H-Isochromenes and 2H-Pyrans. Organic Letters, 2018, 20, 5461-5465.	2.4	35
40	Ligandless nickel-catalyzed transfer hydrogenation of alkenes and alkynes using water as the hydrogen donor. Organic Chemistry Frontiers, 2019, 6, 2619-2623.	2.3	35
41	Copper-Catalyzed Borylative Cyclization of in Situ Generated <i>o</i> -Allenylaryl Nitriles with Bis(pinacolato)diboron. Organic Letters, 2017, 19, 3398-3401.	2.4	34
42	Goldâ€Catalyzed Ring Expansion of Alkynyl Heterocycles through 1,2â€Migration of an Endocyclic Carbon–Heteroatom Bond. Chemistry - A European Journal, 2015, 21, 18571-18575.	1.7	32
43	Nickelâ€Catalyzed [2+2+2] Cycloaddition of Alkyneâ€Nitriles with Alkynes Assisted by Lewis Acids: Efficient Synthesis of Fused Pyridines. Chemistry - A European Journal, 2016, 22, 16765-16769.	1.7	32
44	Benzofurazan $\langle i \rangle N \langle i \rangle$ -Oxides as Mild Reagents for the Generation of α-Imino Gold Carbenes: Synthesis of Functionalized 7-Nitroindoles. Organic Letters, 2019, 21, 7613-7618.	2.4	32
45	Improved Synthesis of Aryl-Substituted Anthracenes and Heteroacenes. Journal of Organic Chemistry, 2007, 72, 9830-9833.	1.7	30
46	New Zirconium-Mediated Approach Toward Regio- and Stereocontrolled Synthesis oftrans-Enediynes. Organic Letters, 2006, 8, 309-311.	2.4	29
47	Highly Efficient BrÃ,nsted Acidâ€Catalyzed Cycloisomerizations of Alkynes Bearing Bis(acetoxy) Groups to Indenyl Ketones. Advanced Synthesis and Catalysis, 2008, 350, 797-801.	2.1	29
48	Gold-catalyzed cascade cycloisomerization of 1,7-diyn-3,6-bis(propargyl carbonate)s: stereoselective synthesis of naphtho[b]cyclobutenes. Chemical Communications, 2013, 49, 8650.	2.2	29
49	Highly Stereoselective Synthesis of TMS-, Alkyl-, or Aryl-Substitutedcis-[3]Cumulenols via α-Alkynylated Zirconacyclopentenes. Angewandte Chemie - International Edition, 2006, 45, 4163-4167.	7.2	27
50	Goldâ€Catalyzed Cascade Reactions of Furanâ€ynes with External Nucleophiles Consisting of a 1,2â€Rearrangement: Straightforward Synthesis of Multiâ€Substituted Benzo[<i>b</i>) furans. Chemistry - A European Journal, 2014, 20, 7514-7519.	1.7	27
51	Titanium-mediated cross-coupling reactions of 1,3-butadiynes with $\hat{l}\pm$ -iminonitriles to 3-aminopyrroles: observation of an imino aza-Nazarov cyclization. Organic Chemistry Frontiers, 2014, 1, 940-946.	2.3	27
52	Nickel-Catalyzed Cyanation of Unactivated Alkyl Chlorides or Bromides with Zn(CN) ₂ . Organic Letters, 2018, 20, 7735-7739.	2.4	27
53	Ligand-Effect in Gold(I)-Catalyzed Rautenstrauch Rearrangement: Regio- and Stereoselective Synthesis of Bicyclo[3.2.1]octa-3,6-dienes through Cyclodimerization of 1-Ethynyl-2-propenyl Esters. Journal of Organic Chemistry, 2018, 83, 1287-1297.	1.7	26
54	Dehalogenative Deuteration of Unactivated Alkyl Halides Using D ₂ O as the Deuterium Source. Journal of Organic Chemistry, 2019, 84, 13841-13857.	1.7	26

#	Article	IF	CITATIONS
55	Ligand-Controlled Regiodivergent Silylation of Allylic Alcohols by Ni/Cu Catalysis for the Synthesis of Functionalized Allylsilanes. Organic Letters, 2019, 21, 9652-9657.	2.4	26
56	Goldâ€Catalyzed Cadiot–Chodkiewiczâ€type Crossâ€Coupling of Terminal Alkynes with Alkynyl Hypervalent lodine Reagents: Highly Selective Synthesis of Unsymmetrical 1,3â€Diynes. Angewandte Chemie, 2017, 129, 7098-7102.	1.6	24
57	Nickel-catalyzed highly regioselective hydrocyanation of alkenes with Zn(CN) < sub>2 < /sub>. Organic Chemistry Frontiers, 2019, 6, 2037-2042.	2.3	24
58	Cp ₂ TiCl ₂ -catalyzed cis-hydroalumination of propargylic amines with Red-Al: stereoselective synthesis of Z-configured allylic amines. Chemical Communications, 2015, 51, 6426-6429.	2.2	23
59	Gold(I)â€Catalyzed 1,4―and/or 1,5â€Heteroaryl Migration Reactions through Regiocontrolled Cyclizations. Chemistry - A European Journal, 2015, 21, 559-564.	1.7	23
60	Gold-catalyzed cyclization of 1,6-diynyl dithioacetals via 1,7-carbene transfer and aromatic C–H functionalization. Chemical Communications, 2016, 52, 11000-11003.	2.2	23
61	Nickelâ€Catalyzed Direct Coupling of Allylic Alcohols with Organoboron Reagents. Chinese Journal of Chemistry, 2018, 36, 916-920.	2.6	22
62	Copper-Catalyzed Borylative Cyclization of <i>>o</i> -(Cyano)phenyl Propargyl Carbonates: Synthesis of Functionalized 1-Naphthylamines. Organic Letters, 2018, 20, 3661-3665.	2.4	22
63	Synthesis of functionalized indolizines via gold(<scp>i</scp>)-catalyzed intramolecular hydroarylation/aromatization of pyrrole-ynes. Organic and Biomolecular Chemistry, 2017, 15, 8119-8133.	1.5	21
64	Nickel-Catalyzed Homo- and Cross-Coupling of Allyl Alcohols via Allyl Boronates. Organic Letters, 2020, 22, 4418-4423.	2.4	21
65	Copperâ€Catalyzed ortho â€Functionalization of Quinoline N â€Oxides with Vinyl Arenes. Angewandte Chemie - International Edition, 2020, 59, 18975-18979.	7.2	19
66	Palladium-catalyzed highly efficient synthesis of tetracenes and pentacenes. Chemical Communications, 2012, 48, 12189.	2.2	18
67	Cyanoâ€Schmittel Cyclization through Baseâ€Induced Propargylâ€Allenyl Isomerization: Highly Modular Synthesis of Pyridineâ€Fused Aromatic Derivatives. Chemistry - A European Journal, 2015, 21, 18699-18705.	1.7	18
68	Goldâ€Catalyzed Cyclization of Furanâ€Ynes bearing a Propargyl Carbonate Group: Intramolecular Dielsâ€"Alder Reaction with In Situ Generated Allenes. Chemistry - A European Journal, 2016, 22, 14175-14180.	1.7	18
69	Regio- and Stereoselective Coupling of Heteroaryl-Substituted Alkynes:  New Insights into the Mechanism of Zirconium-Mediated Cyclodimerization of Alkynes and a Facile Route to 3-Methylenecyclobutenes. Organometallics, 2006, 25, 5035-5044.	1.1	17
70	Baseâ€Catalyzed Cyclization of 1,6â€Diynyl Carboxylates Involving Propargylâ€Allenyl Isomerization: Efficient Synthesis of Benzo[<i>b</i>]fluorene and Its Analogues. Advanced Synthesis and Catalysis, 2017, 359, 1394-1401.	2.1	16
71	Gold-Catalyzed Oxidative Cyclization Involving Nucleophilic Attack to the Keto Group of α,α′-Dioxo Gold Carbene and 1,2-Alkynyl Migration: Synthesis of Furan-3-carboxylates. Organic Letters, 2021, 23, 6813-6818.	2.4	15
72	Stereoselective synthesis of enynones via base-catalyzed isomerization of 1,5-disubstituted-2,4-pentadiynyl silyl ethers or their alcohol derivatives. Organic and Biomolecular Chemistry, 2010, 8, 4806.	1.5	14

#	Article	IF	CITATIONS
73	Nickel-Catalyzed C(sp ³)â€"H Functionalization of Benzyl Nitriles: Direct Michael Addition to Terminal Vinyl Ketones. Organic Letters, 2021, 23, 6004-6009.	2.4	11
74	Unusual Regioselectivity in the Aldehyde Addition Reactions of Allenyl/Propargyl Zirconium Complexes Derived from γ-(2-Pyridyl)propargyl Ethers: Synthesis of Multisubstituted α-Hydroxyallenes. Organometallics, 2013, 32, 1636-1642.	1.1	10
75	Gold/Lewis acid catalyzed oxidative cyclization involving activation of nitriles. Chemical Communications, 2020, 56, 15581-15584.	2.2	10
76	Nickel-Catalyzed Î ² -Regioselective Amination/Cyclization of Ynamide-Nitriles with Amines: Synthesis of Functionalized 3-Aminoindoles and 4-Aminoisoquinolines. Organic Letters, 2021, 23, 1296-1301.	2.4	10
77	Nickel-Catalyzed Cyanation of Unactivated Alkyl Sulfonates with Zn(CN)2. Organic Letters, 2020, 22, 7842-7847.	2.4	9
78	Gold-Catalyzed Spirocyclization of Furan-ynones and Unexpected Skeleton Rearrangement of the Resulting Spirohydrofurans. Organic Letters, 2021, 23, 1090-1095.	2.4	9
79	Gold(III) or Gold(I)/Lewis-Acid-Catalyzed Substitution/Cyclization/1,2-Migration Reactions of Propargyl Alcohols with 3-Amino-benzo [$<$ i $>$ d $<$ /i $>$]isoxazoles: Synthesis of Pyrimidine Derivatives. Organic Letters, 2022, , .	2.4	9
80	Gold-Catalyzed Cyclization of Ynones Involving cis-Hydrofunctionalizations: Rapid Assembly of C-, O-, or S-Functionalized Pyrroles by a Single Methodology. Organic Letters, 2022, , .	2.4	8
81	Copper-catalyzed <i>ortho</i> -alkenylation of quinoline <i>N</i> -oxides with alkynes. Organic Chemistry Frontiers, 2022, 9, 2198-2203.	2.3	8
82	Cascade Skeletal Rearrangement of Gold Carbene Intermediates: Synthesis of Mediumâ€Sized Pyrimidineâ€Fused Benzolactones. Advanced Synthesis and Catalysis, 2021, 363, 3769-3774.	2.1	7
83	Reactions of Zirconocene–1-Aza-1,3-diene Complexes with Acyl Cyanides: Substrate-Dependent Synthesis of Acyl- or Non-Acyl-Substituted Pyrroles. Organometallics, 2015, 34, 5597-5601.	1.1	6
84	Nickelâ€Catalyzed Crossâ€Coupling of Aryl Pivalates with Cyclobutanols Involving Câ€"O and Câ€"C Bond Cleavage â€. Chinese Journal of Chemistry, 2020, 38, 1686-1690.	2.6	6
85	Zirconiumâ€Mediated Multicomponent Reactions of 1,3â€Butadiynes with Ylidenemalononitriles to Form Functionalized 1,8â€Naphthyridine and Cyclopenta[<i>b</i>]pyridine Derivatives. Chemistry - A European Journal, 2015, 21, 1420-1424.	1.7	5
86	Synthesis of <i>ortho</i> -Diamino-Functionalized 1-Arylnaphthalenes through Nickel-Catalyzed Cyclization of Ynamide-Benzylnitriles with Organoboronic Acids. Organic Letters, 2021, 23, 7949-7954.	2.4	4
87	Gold-Catalyzed Ring Expansion Reaction: Highly Efficient Synthesis of Functionalized 2, 3-Benzodiazepine Scaffolds. Chinese Journal of Organic Chemistry, 2018, 38, 190.	0.6	3
88	PBr3-Mediated Cyclization of 1,7-Diyn-3,6-bis(propargyl carbonate)s: Synthesis of 5-Bromotetracenes. Journal of Organic Chemistry, 2017, 82, 10051-10061.	1.7	2
89	Synthesis of phospholes and $1,1\hat{a}\in^2$ -biphospholes mediated by zirconacyclopentadienes and PBr3. Tetrahedron Letters, 2020, 61, 151388.	0.7	2
90	Copperâ€Catalyzed ortho â€Functionalization of Quinoline N â€Oxides with Vinyl Arenes. Angewandte Chemie, 2020, 132, 19137-19141.	1.6	2