Johan Sukweenadhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/773196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, 2016, 34, 588-599.	9.3	1,161
2	Genetic and Biochemical Mechanisms of Pollen Wall Development. Trends in Plant Science, 2015, 20, 741-753.	8.8	315
3	Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances, 2015, 33, 717-735.	11.7	268
4	Molecular Control of Male Fertility for Crop Hybrid Breeding. Trends in Plant Science, 2018, 23, 53-65.	8.8	212
5	Functional Analysis of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Encoding Genes in Triterpene Saponin-Producing Ginseng Â. Plant Physiology, 2014, 165, 373-387.	4.8	128
6	Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances, 2019, 37, 107394.	11.7	114
7	Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiological Research, 2015, 172, 7-15.	5.3	100
8	Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. Journal of Ginseng Research, 2014, 38, 66-72.	5.7	95
9	Cylindrocarpon destructans/llyonectria radicicola-species complex:ÂCausative agent of ginseng root-rot disease andÂrustyÂsymptoms. Journal of Ginseng Research, 2018, 42, 9-15.	5.7	93
10	Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the United States of America, 2017, 114, 12327-12332.	7.1	88
11	Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications, 2018, 9, 2346.	12.8	66
12	Characteristics of Panax ginseng Cultivars in Korea and China. Molecules, 2020, 25, 2635.	3.8	65
13	Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-ήB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cellular and Developmental Biology - Animal. 2016. 52, 287-295.	1.5	64
14	A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. Frontiers in Plant Science, 2018, 9, 813.	3.6	63
15	Production of ginseng saponins: elicitation strategy and signal transductions. Applied Microbiology and Biotechnology, 2015, 99, 6987-6996.	3.6	54
16	Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 2022, 284, 119189.	10.2	54
17	Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng C. A. Meyer. Molecular Biology Reports, 2011, 38, 2761-2769.	2.3	51
18	Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. Journal of Ginseng Research, 2014, 38, 270-277.	5.7	50

Johan Sukweenadhi

#	Article	IF	CITATIONS
19	A Rice Ca ²⁺ Binding Protein Is Required for Tapetum Function and Pollen Formation. Plant Physiology, 2016, 172, 1772-1786.	4.8	50
20	Gold nanoparticles synthesized using <i>Panax ginseng</i> leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 270-276.	2.8	50
21	Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids and Surfaces B: Biointerfaces, 2018, 162, 398-404.	5.0	50
22	Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer. Journal of Ginseng Research, 2011, 35, 1-11.	5.7	50
23	Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiological Research, 2017, 200, 45-52.	5.3	49
24	Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Archives of Microbiology, 2015, 197, 439-447.	2.2	48
25	Expression and stress tolerance of PR10 genes from Panax ginseng C. A. Meyer. Molecular Biology Reports, 2012, 39, 2365-2374.	2.3	45
26	Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomedicine and Pharmacotherapy, 2017, 93, 995-1003.	5.6	45
27	Proteomics of Rice—Magnaporthe oryzae Interaction: What Have We Learned So Far?. Frontiers in Plant Science, 2019, 10, 1383.	3.6	42
28	Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses. Gene, 2014, 535, 33-41.	2.2	40
29	Rice RHC Encoding a Putative Cellulase is Essential for Normal Root Hair Elongation. Journal of Plant Biology, 2019, 62, 82-91.	2.1	35
30	Key Genes in the Melatonin Biosynthesis Pathway with Circadian Rhythm Are Associated with Various Abiotic Stresses. Plants, 2021, 10, 129.	3.5	35
31	Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene, 2014, 546, 89-96.	2.2	34
32	Assessment of radical scavenging, whitening and moisture retention activities of <i>Panax ginseng</i> berry mediated gold nanoparticles as safe and efficient novel cosmetic material. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 333-340.	2.8	34
33	Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Reports, 2018, 37, 393-410.	5.6	34
34	Molecular Basis of Pollen Germination in Cereals. Trends in Plant Science, 2019, 24, 1126-1136.	8.8	34
35	Expression and functional characterization of pathogenesis-related protein family 10 gene, PgPR10-2, from Panax ginseng C.A. Meyer. Physiological and Molecular Plant Pathology, 2010, 74, 323-329. 	2.5	32
36	Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie Van Leeuwenhoek, 2014, 106, 935-945.	1.7	32

JOHAN SUKWEENADHI

#	Article	IF	CITATIONS
37	<i>GORI</i> , encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Plant Journal, 2021, 105, 1645-1664.	5.7	31
38	Identification of Msp1-Induced Signaling Components in Rice Leaves by Integrated Proteomic and Phosphoproteomic Analysis. International Journal of Molecular Sciences, 2019, 20, 4135.	4.1	30
39	Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene, 2014, 536, 186-192.	2.2	29
40	<i>PgLOX6</i> encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in <i>Panax ginseng</i> . Journal of Experimental Botany, 2016, 67, 6007-6019.	4.8	29
41	Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng. European Journal of Plant Pathology, 2016, 145, 331-343.	1.7	29
42	Genome-wide Analysis of Root Hair Preferred RBOH Genes Suggests that Three RBOH Genes are Associated with Auxin-mediated Root Hair Development in Rice. Journal of Plant Biology, 2019, 62, 229-238.	2.1	29
43	Expression of the ginseng PgPR10-1 in Arabidopsis confers resistance against fungal and bacterial infection. Gene, 2012, 506, 85-92.	2.2	26
44	Grass-Specific <i>EPAD1</i> Is Essential for Pollen Exine Patterning in Rice. Plant Cell, 2020, 32, 3961-3977.	6.6	26
45	CAFRIâ€Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice. Plant Journal, 2020, 104, 532-545.	5.7	26
46	Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. Biochemistry (Moscow), 2011, 76, 1347-1359.	1.5	23
47	Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation. Journal of Ginseng Research, 2020, 44, 332-340.	5.7	23
48	Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biology, 2020, 20, 95.	3.6	23
49	Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie Van Leeuwenhoek, 2015, 107, 749-758.	1.7	22
50	Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field. Archives of Microbiology, 2015, 197, 973-981.	2.2	22
51	Molecular characterization of 5-chlorophyll a/b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses. Photosynthetica, 2016, 54, 446-458.	1.7	22
52	Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increases terpenoid biosynthesis in Panax ginseng. Plant Cell, Tissue and Organ Culture, 2015, 123, 341-348.	2.3	21
53	Infrastructures of systems biology that facilitate functional genomic study in rice. Rice, 2019, 12, 15.	4.0	21
54	Phytochemistry of ginsenosides: Recent advancements and emerging roles. Critical Reviews in Food Science and Nutrition, 2023, 63, 613-640.	10.3	21

JOHAN SUKWEENADHI

#	Article	IF	CITATIONS
55	A Multiprotein Complex Regulates Interference-Sensitive Crossover Formation in Rice. Plant Physiology, 2019, 181, 221-235.	4.8	20
56	Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering, 2021, 38, 1-8.	2.4	20
57	Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Research on Chemical Intermediates, 2016, 42, 2937-2951.	2.7	18
58	Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer. Journal of Ginseng Research, 2012, 36, 449-460.	5.7	17
59	OsMTD2â€mediated reactive oxygen species (ROS) balance is essential for intact pollenâ€tube elongation in rice. Plant Journal, 2021, 107, 1131-1147.	5.7	17
60	Isolation and Characterization of a Glutaredoxin Gene from Panax ginseng C. A. Meyer. Plant Molecular Biology Reporter, 2008, 26, 335-349.	1.8	16
61	Publisher's note. Colloids and Surfaces B: Biointerfaces, 2017, 160, 423.	5.0	16
62	Comparative Transcriptome Analysis Reveals Gene Regulatory Mechanism of UDT1 on Anther Development. Journal of Plant Biology, 2020, 63, 289-296.	2.1	16
63	Isolation of Sesquiterpene Synthase Homolog from Panax ginseng C.A. Meyer. Journal of Ginseng Research, 2010, 34, 17-22.	5.7	16
64	Cytological characterization of anther development in Panax ginseng Meyer. Protoplasma, 2016, 253, 1111-1124.	2.1	15
65	Process Optimization for Green Synthesis of Silver Nanoparticles Using Indonesian Medicinal Plant Extracts. Processes, 2020, 8, 998.	2.8	15
66	Humibacter ginsengiterrae sp. nov., and Humibacter ginsengisoli sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2734-2740.	1.7	15
67	Transcriptome Analysis of Triple Mutant for OsMADS62, OsMADS63, and OsMADS68 Reveals the Downstream Regulatory Mechanism for Pollen Germination in Rice (Oryza sativa). International Journal of Molecular Sciences, 2022, 23, 239.	4.1	15
68	Rice Male Gamete Expression Database (RMEDB): A Web Resource for Functional Genomic Studies of Rice Male Organ Development. Journal of Plant Biology, 2020, 63, 421-430.	2.1	14
69	Physiological Importance of Pectin Modifying Genes During Rice Pollen Development. International Journal of Molecular Sciences, 2020, 21, 4840.	4.1	14
70	Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. Plant Cell Reports, 2016, 35, 779-790.	5.6	13
71	Complete genome sequence of Paenibacillus yonginensis DCY84T, a novel plant Symbiont that promotes growth via induced systemic resistance. Standards in Genomic Sciences, 2017, 12, 63.	1.5	13
72	The Role of Rice Vacuolar Invertase2 in Seed Size Control. Molecules and Cells, 2019, 42, 711-720.	2.6	13

5

Johan Sukweenadhi

#	Article	IF	CITATIONS
73	The effects of rice seed dressing with Paenibacillus yonginensis and silicon on crop development on South Korea's reclaimed tidal land. Field Crops Research, 2016, 188, 121-132.	5.1	12
74	Silicon confers protective effect against ginseng root rot by regulating sugar efflux into apoplast. Scientific Reports, 2019, 9, 18259.	3.3	11
75	Phospholipase pPLAIIIα Increases Germination Rate and Resistance to Turnip Crinkle Virus when Overexpressed. Plant Physiology, 2020, 184, 1482-1498.	4.8	11
76	Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3. Frontiers in Plant Science, 2021, 12, 609473.	3.6	11
77	Functional characterization of the pathogenesis-related protein family 10 gene, PgPR10-4, from Panax ginseng in response to environmental stresses. Plant Cell, Tissue and Organ Culture, 2014, 118, 531-543.	2.3	10
78	Overexpression of a cytosolic ascorbate peroxidase from Panax ginseng enhanced salt tolerance in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2017, 129, 337-350.	2.3	10
79	Genomic Characterization of a Newly Isolated Rhizobacteria Sphingomonas panacis Reveals Plant Growth Promoting Effect to Rice. Biotechnology and Bioprocess Engineering, 2019, 24, 119-125.	2.6	10
80	Therapeutic Applications of Type 2 Diabetes Mellitus Drug Metformin in Patients with Osteoarthritis. Pharmaceuticals, 2021, 14, 152.	3.8	10
81	Rice β-Glucosidase Os12BGlu38 is Required for Synthesis of Intine Cell Wall and Pollen Fertility. Journal of Experimental Botany, 2021, , .	4.8	10
82	Antioxidant activity screening of seven Indonesian herbal extract. Biodiversitas, 2020, 21, .	0.6	10
83	Ectopic overexpression of the aluminum-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2014, 119, 95-106.	2.3	9
84	Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana. Physiology and Molecular Biology of Plants, 2016, 22, 485-495.	3.1	8
85	Optimization of Protein Isolation and Label-Free Quantitative Proteomic Analysis in Four Different Tissues of Korean Ginseng. Plants, 2021, 10, 1409.	3.5	7
86	Molecular characterization and expression analysis of pathogenesis related protein 6 from Panax ginseng. Russian Journal of Genetics, 2017, 53, 1211-1220.	0.6	6
87	Interaction of OsRopGEF3 Protein With OsRac3 to Regulate Root Hair Elongation and Reactive Oxygen Species Formation in Rice (Oryza sativa). Frontiers in Plant Science, 2021, 12, 661352.	3.6	6
88	An Integrated Approach for the Efficient Extraction and Solubilization of Rice Microsomal Membrane Proteins for High-Throughput Proteomics. Frontiers in Plant Science, 2021, 12, 723369.	3.6	6
89	Gold Nanoparticles Green-Synthesized by the Suaeda japonica Leaf Extract and Screening of Anti-Inflammatory Activities on RAW 267.4 Macrophages. Coatings, 2022, 12, 460.	2.6	6
90	Interspecies hybrids of Panax ginseng Meyer new line 0837 and Panax quinquefolius generated superior F1 hybrids with greater biomass and ginsenoside contents. Horticulture Environment and Biotechnology, 2019, 60, 573-583.	2.1	5

#	Article	IF	CITATIONS
91	Overexpression of a novel cytochrome P450 monooxygenase gene, CYP704B1, from Panax ginseng increase biomass of reproductive tissues in transgenic Arabidopsis. Molecular Biology Reports, 2020, 47, 4507-4518.	2.3	5
92	A Systemic View of Carbohydrate Metabolism in Rice to Facilitate Productivity. Plants, 2021, 10, 1690.	3.5	5
93	Physical Characteristic and Antibacterial Activity of Silver Nanoparticles from Green Synthesis Using Ethanol Extracts of Phaleria macrocarpa (Scheff.) Boerl Leaves. Majalah Obat Tradisional, 2019, 24, 22.	0.1	5
94	Isolation and characterization of Panax ginseng geranylgeranyl-diphosphate synthase genes responding to drought stress. European Journal of Plant Pathology, 2015, 142, 747-758.	1.7	4
95	Cytological analysis of ginseng carpel development. Protoplasma, 2017, 254, 1909-1922.	2.1	4
96	Karakter Fisik dan Aktivitas Antibakteri Nanopartikel Perak Hasil Green Synthesis Menggunakan Ekstrak Air Daun Sendok (Plantago major L.). Pharmaceutical Sciences and Research, 2019, 6, 69-81.	0.1	4
97	Overexpression of the Panax ginseng CYP703 Alters Cutin Composition of Reproductive Tissues in Arabidopsis. Plants, 2022, 11, 383.	3.5	4
98	Isolation and in vitro screening of plant growth promoting rhizobacteria from Barak Cenana red rice. AIP Conference Proceedings, 2019, , .	0.4	3
99	A modified transient gene expression protocol for subcellular protein localization analysis in rice. Plant Biotechnology Reports, 2020, 14, 131-138.	1.5	3
100	Nitrous Oxide Emission and Crop Yield in Arable Soil Amended with Bottom Ash. Agriculture (Switzerland), 2021, 11, 1012.	3.1	3
101	WD40-domain protein GORI is an integrative scaffold that is required for pollen tube growth in rice. Plant Signaling and Behavior, 2023, 18, .	2.4	3
102	Comparative transcriptome analysis of pollen and anther wall reveals novel insights into the regulatory mechanisms underlying anther wall development and its dehiscence in rice. Plant Cell Reports, 2022, 41, 1229-1242.	5.6	2
103	Valorization of Peel-Based Agro-Waste Flour for Food Products: A Systematic Review on Proximate Composition and Functional Properties. ACS Food Science & Technology, 2022, 2, 3-20.	2.7	2
104	Metabolic Dynamics and Ginsenoside Biosynthesis. Compendium of Plant Genomes, 2021, , 121-141.	0.5	1
105	A Protocol for the Plasma Membrane Proteome Analysis of Rice Leaves. Methods in Molecular Biology, 2020, 2139, 107-115.	0.9	1
106	Comparative study of polyphenolic compound extraction from empty palm fruit bunches and sugarcane pulp. Heliyon, 2022, 8, e08951.	3.2	1
107	Global Identification and Characterization of C2 Domain-Containing Proteins Associated with Abiotic Stress Response in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2022, 23, 2221.	4.1	1
108	Selection of potential Indonesian plant species for antioxidant. IOP Conference Series: Earth and Environmental Science, 2020, 457, 012040.	0.3	0

#	Article	IF	CITATIONS
109	Fast Track to Discover Novel Promoters in Rice. Plants, 2020, 9, 125.	3.5	0
110	Transcription Pattern of Catalase Gene from Gynostemma pentaphyllum (Thunb.) Makino during Various Abiotic Stresses. KnE Life Sciences, 2017, 3, 99.	0.1	0