Lieven De Veylder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731699/publications.pdf Version: 2024-02-01

LIEVEN DE VEVIDED

#	Article	IF	CITATIONS
1	Cell Cycle Regulation in Plant Development. Annual Review of Genetics, 2006, 40, 77-105.	3.2	704
2	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653-1668.	3.1	595
3	Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. Plant Cell, 2002, 14, 903-916.	3.1	523
4	The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology, 2011, 7, 508.	3.2	520
5	A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Current Biology, 2010, 20, 1697-1706.	1.8	431
6	Control of proliferation, endoreduplication and differentiation by theArabidopsisE2Fa-DPa transcription factor. EMBO Journal, 2002, 21, 1360-1368.	3.5	373
7	Cyclin-Dependent Kinases and Cell Division in Plants—The Nexus. Plant Cell, 1999, 11, 509-521.	3.1	340
8	Targeted interactomics reveals a complex core cell cycle machinery in <i>Arabidopsis thaliana</i> . Molecular Systems Biology, 2010, 6, 397.	3.2	315
9	The ins and outs of the plant cell cycle. Nature Reviews Molecular Cell Biology, 2007, 8, 655-665.	16.1	314
10	The Plant-Specific Cyclin-Dependent Kinase CDKB1;1 and Transcription Factor E2Fa-DPa Control the Balance of Mitotically Dividing and Endoreduplicating Cells in Arabidopsis. Plant Cell, 2004, 16, 2683-2692.	3.1	277
11	Molecular control and function of endoreplication in development and physiology. Trends in Plant Science, 2011, 16, 624-634.	4.3	276
12	ERF115 Controls Root Quiescent Center Cell Division and Stem Cell Replenishment. Science, 2013, 342, 860-863.	6.0	263
13	Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint. Plant Cell, 2007, 19, 211-225.	3.1	258
14	The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA;1 Kinase Complexes. Plant Cell, 2005, 17, 1723-1736.	3.1	248
15	Genome-Wide Analysis of Gene Expression Profiles Associated with Cell Cycle Transitions in Growing Organs of Arabidopsis. Plant Physiology, 2005, 138, 734-743.	2.3	247
16	SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana. Plant Cell, 2006, 18, 3145-3157.	3.1	234
17	Genome-Wide Identification of Potential Plant E2F Target Genes. Plant Physiology, 2005, 139, 316-328.	2.3	229
18	Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes. Plant Physiology, 2017, 175, 1158-1174.	2.3	214

#	Article	IF	CITATIONS
19	The Role of the Arabidopsis E2FB Transcription Factor in Regulating Auxin-Dependent Cell Division. Plant Cell, 2005, 17, 2527-2541.	3.1	210
20	Unraveling Transcriptional Control in Arabidopsis Using cis-Regulatory Elements and Coexpression Networks Â. Plant Physiology, 2009, 150, 535-546.	2.3	197
21	Atypical E2Fs: new players in the E2F transcription factor family. Trends in Cell Biology, 2009, 19, 111-118.	3.6	197
22	Mechanisms Used by Plants to Cope with DNA Damage. Annual Review of Plant Biology, 2016, 67, 439-462.	8.6	197
23	CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset Â. Plant Physiology, 2009, 150, 1482-1493.	2.3	188
24	Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 2017, 3, 17057.	4.7	183
25	Atypical E2F activity restrains APC/C ^{CCS52A2} function obligatory for endocycle onset. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14721-14726.	3.3	175
26	B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana. Plant Cell, 2004, 16, 945-955.	3.1	173
27	The DP-E2F-like Gene DEL1 Controls the Endocycle in Arabidopsis thaliana. Current Biology, 2005, 15, 59-63.	1.8	173
28	APC/C ^{CCS52A} complexes control meristem maintenance in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11806-11811.	3.3	172
29	Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of <i>Arabidopsis E2Fa</i> by Lateral Organ Boundary Proteins. Plant Cell, 2011, 23, 3671-3683.	3.1	171
30	UV-B-Responsive Association of the <i>Arabidopsis</i> bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter Â. Plant Cell, 2014, 26, 4200-4213.	3.1	171
31	Functional Modules in the <i>Arabidopsis</i> Core Cell Cycle Binary Protein–Protein Interaction Network. Plant Cell, 2010, 22, 1264-1280.	3.1	168
32	The <i>Arabidopsis</i> SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species. Plant Cell, 2014, 26, 296-309.	3.1	164
33	PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants, 2015, 1, 15089.	4.7	160
34	Plant cell cycle transitions. Current Opinion in Plant Biology, 2003, 6, 536-543.	3.5	157
35	The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7754-7759.	3.3	154
36	Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist, 2013, 197, 490-502.	3.5	151

#	Article	IF	CITATIONS
37	A Plant-specific Cyclin-dependent Kinase Is Involved in the Control of G2/M Progression in Plants. Journal of Biological Chemistry, 2001, 276, 36354-36360.	1.6	145
38	Switching the Cell Cycle. Kip-Related Proteins in Plant Cell Cycle Control. Plant Physiology, 2005, 139, 1099-1106.	2.3	142
39	<i>Arabidopsis</i> E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO Journal, 2012, 31, 1480-1493.	3.5	142
40	Transcriptome analysis during cell division in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14825-14830.	3.3	140
41	Novel Plant-specific Cyclin-dependent Kinase Inhibitors Induced by Biotic and Abiotic Stresses. Journal of Biological Chemistry, 2007, 282, 25588-25596.	1.6	139
42	AUREOCHROME1a-Mediated Induction of the Diatom-Specific Cyclin <i>dsCYC2</i> Controls the Onset of Cell Division in Diatoms (<i>Phaeodactylum tricornutum</i>). Plant Cell, 2013, 25, 215-228.	3.1	136
43	A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta, 1999, 208, 453-462.	1.6	135
44	MicroRNA miR396 Regulates the Switch between Stem Cells and Transit-Amplifying Cells in Arabidopsis Roots. Plant Cell, 2015, 27, 3354-3366.	3.1	125
45	The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development. PLoS ONE, 2009, 4, e4780.	1.1	124
46	The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiology, 2005, 137, 127-140.	2.3	121
47	The DOF transcription factor OBP1 is involved in cell cycle regulation in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 779-792.	2.8	120
48	Transcriptional control of the cell cycle. Current Opinion in Plant Biology, 2009, 12, 599-605.	3.5	118
49	Developmental regulation of CYCA2s contributes to tissue-specific proliferation in <i>Arabidopsis</i> . EMBO Journal, 2011, 30, 3430-3441.	3.5	113
50	Translational control of eukaryotic gene expression. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 143-168.	2.3	112
51	Cell cycle entry, maintenance, and exit during plant development. Current Opinion in Plant Biology, 2015, 23, 1-7.	3.5	111
52	The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nature Plants, 2016, 2, 16165.	4.7	111
53	A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 2018, 30, 2330-2351.	3.1	107
54	Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the <i>Arabidopsis</i> Cdk1 Homolog CDKA;1 Â. Plant Cell, 2009, 21, 3641-3654.	3.1	106

#	Article	IF	CITATIONS
55	Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species Â. Plant Cell, 2014, 26, 3243-3260.	3.1	106
56	A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13380-13385.	3.3	105
57	The Cyclin-Dependent Kinase Inhibitor Orysa;KRP1 Plays an Important Role in Seed Development of Rice. Plant Physiology, 2006, 142, 1053-1064.	2.3	101
58	DNA stress checkpoint control and plant development. Current Opinion in Plant Biology, 2009, 12, 23-28.	3.5	100
59	OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS Genetics, 2012, 8, e1002865.	1.5	93
60	Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biology, 2010, 11, R17.	13.9	91
61	TheArabidopsisCks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Letters, 1997, 412, 446-452.	1.3	90
62	<i>Arabidopsis</i> ULTRAVIOLET-B-INSENSITIVE4 Maintains Cell Division Activity by Temporal Inhibition of the Anaphase-Promoting Complex/Cyclosome Â. Plant Cell, 2011, 23, 4394-4410.	3.1	89
63	The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO Journal, 2008, 27, 1840-1851.	3.5	85
64	It's Time for Some "Site―Seeing: Novel Tools to Monitor the Ubiquitin Landscape in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 6-16.	3.1	84
65	The <i>Arabidopsis thaliana</i> Checkpoint Kinase WEE1 Protects against Premature Vascular Differentiation during Replication Stress. Plant Cell, 2011, 23, 1435-1448.	3.1	81
66	Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells Â. Plant Physiology, 2011, 156, 2172-2183.	2.3	81
67	Characterization of two distinct DP-related genes fromArabidopsis thaliana1. FEBS Letters, 2000, 486, 79-87.	1.3	80
68	The <i>Arabidopsis</i> COP9 signalosome is essential for G2 phase progression and genomic stability. Development (Cambridge), 2008, 135, 2013-2022.	1.2	79
69	SIAMESE Cooperates With the CDH1-like Protein CCS52A1 to Establish Endoreplication in <i>Arabidopsis thaliana</i> Trichomes. Genetics, 2010, 185, 257-268.	1.2	77
70	A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Scientific Reports, 2016, 6, 19252.	1.6	76
71	Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. Journal of Cell Science, 2003, 116, 4249-4259.	1.2	75
72	<i>CCS52</i> and <i>DEL1</i> genes are key components of the endocycle in nematodeâ€induced feeding sites. Plant Journal, 2012, 72, 185-198.	2.8	75

#	Article	IF	CITATIONS
73	ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO Journal, 2008, 27, 2746-2756.	3.5	71
74	The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Developmental Cell, 2018, 45, 101-113.e4.	3.1	71
75	A kaleidoscopic view of the Arabidopsis core cell cycle interactome. Trends in Plant Science, 2011, 16, 141-150.	4.3	70
76	The Anaphase-Promoting Complex/Cyclosome in Control of Plant Development. Molecular Plant, 2012, 5, 1182-1194.	3.9	70
77	Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 2018, 131, .	1.2	70
78	A quiescent path to plant longevity. Trends in Cell Biology, 2014, 24, 443-448.	3.6	69
79	Centromeric Cohesion Is Protected Twice at Meiosis, by SHUGOSHINs at Anaphase I and by PATRONUS at Interkinesis. Current Biology, 2013, 23, 2090-2099.	1.8	67
80	Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO Journal, 2011, 30, 355-363.	3.5	66
81	What if higher plants lack a CDC25 phosphatase?. Trends in Plant Science, 2006, 11, 474-479.	4.3	65
82	Physiological and Transcriptomic Evidence for a Close Coupling between Chloroplast Ontogeny and Cell Cycle Progression in the Pennate Diatom <i>Seminavis robusta</i> Â Â Â Â. Plant Physiology, 2008, 148, 1394-1411.	2.3	65
83	Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant Journal, 2009, 57, 184-194.	2.8	65
84	Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cellular and Molecular Life Sciences, 2003, 60, 401-412.	2.4	64
85	The <i>PRA1</i> Gene Family in Arabidopsis Â. Plant Physiology, 2008, 147, 1735-1749.	2.3	63
86	Rocks in the auxin stream: Wound-induced auxin accumulation and <i>ERF115</i> expression synergistically drive stem cell regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16667-16677.	3.3	63
87	CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant Journal, 2001, 25, 617-626.	2.8	61
88	Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta, 1999, 207, 496-504.	1.6	59
89	Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17844-17849.	3.3	59
90	Systematic analysis of cell ycle gene expression during Arabidopsis development. Plant Journal, 2009, 59, 645-660.	2.8	58

#	Article	IF	CITATIONS
91	The MCM-Binding Protein ETG1 Aids Sister Chromatid Cohesion Required for Postreplicative Homologous Recombination Repair. PLoS Genetics, 2010, 6, e1000817.	1.5	58
92	Light-Dependent Regulation of <i>DEL1</i> ls Determined by the Antagonistic Action of E2Fb and E2Fc Â. Plant Physiology, 2011, 157, 1440-1451.	2.3	58
93	Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. Plant Cell, 2016, 28, 2276-2290.	3.1	57
94	New Insights into the Control of Endoreduplication: Endoreduplication Could Be Driven by Organ Growth in Arabidopsis Leaves Â. Plant Physiology, 2011, 157, 2044-2055.	2.3	56
95	Herbicide Safener-Inducible Gene Expression in Arabidopsis thaliana. Plant and Cell Physiology, 1997, 38, 568-577.	1.5	55
96	Analysis of the Spatial Expression Pattern of Seven Kip Related Proteins (KRPs) in the Shoot Apex of Arabidopsis thaliana. Annals of Botany, 2004, 93, 575-580.	1.4	55
97	Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant Journal, 2004, 37, 889-896.	2.8	55
98	A replication stress-induced synchronization method for Arabidopsis thaliana root meristems. Plant Journal, 2010, 64, 705-714.	2.8	55
99	Combined linkage and association mapping reveals <i>CYCD5;1</i> as a quantitative trait gene for endoreduplication in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4678-4683.	3.3	55
100	The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nature Communications, 2020, 11, 3320.	5.8	55
101	Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins. Cellular and Molecular Life Sciences, 2004, 61, 1485-97.	2.4	53
102	Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics, 2015, 16, 930.	1.2	53
103	Title is missing!. Plant Cell, Tissue and Organ Culture, 2002, 69, 167-176.	1.2	52
104	A Plant-Specific Subclass of C-Terminal Kinesins Contains a Conserved A-Type Cyclin-Dependent Kinase Site Implicated in Folding and Dimerization. Plant Physiology, 2004, 135, 1417-1429.	2.3	52
105	The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. Journal of Plant Research, 2006, 119, 43-50.	1.2	51
106	The Arabidopsis thaliana PIN1At Gene Encodes a Single-domain Phosphorylation-dependent Peptidyl Prolylcis/trans Isomerase. Journal of Biological Chemistry, 2000, 275, 10577-10581.	1.6	49
107	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653.	3.1	47
108	Modification of DNA Checkpoints to Confer Aluminum Tolerance. Trends in Plant Science, 2017, 22, 102-105.	4.3	47

#	Article	IF	CITATIONS
109	Deficiency of the <i>Arabidopsis</i> Helicase RTEL1 Triggers a SOG1-Dependent Replication Checkpoint in Response to DNA Cross-Links. Plant Cell, 2015, 27, 149-161.	3.1	44
110	Molecular regulation of the diatom cell cycle. Journal of Experimental Botany, 2014, 65, 2573-2584.	2.4	43
111	LC–MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC–MS procedure parameters. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 37-43.	1.2	42
112	Multiple Functions of Kip-Related Protein5 Connect Endoreduplication and Cell Elongation Â. Plant Physiology, 2013, 161, 1694-1705.	2.3	41
113	The Dual Face of Cyclin B1. Trends in Plant Science, 2018, 23, 475-478.	4.3	41
114	Arabidopsis PASTICCINO2 Is an Antiphosphatase Involved in Regulation of Cyclin-Dependent Kinase A. Plant Cell, 2006, 18, 1426-1437.	3.1	40
115	The E2F transcription factor family regulates <i>CENH3</i> expression in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 68, 646-656.	2.8	40
116	Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. Plant Physiology, 2022, 188, 898-918.	2.3	40
117	MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. Plant Journal, 2018, 96, 895-909.	2.8	39
118	Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase. Biochemical and Biophysical Research Communications, 2004, 322, 734-739.	1.0	38
119	Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant Journal, 2022, 109, 490-507.	2.8	38
120	Ectopic expression of K ipâ€related proteins restrains rootâ€knot nematodeâ€feeding site expansion. New Phytologist, 2013, 199, 505-519.	3.5	37
121	Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis <i>crumpled leaf</i> Mutant Â. Plant Physiology, 2014, 166, 152-167.	2.3	37
122	Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions. Journal of Experimental Botany, 2001, 52, 1625-1633.	2.4	36
123	The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root Â. Plant Physiology, 2014, 166, 632-643.	2.3	35
124	Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias(Streptophyta), with emphasis on the role of expansin. BMC Plant Biology, 2011, 11, 128.	1.6	34
125	Endoreplication as a potential driver of cell wall modifications. Current Opinion in Plant Biology, 2019, 51, 58-65.	3.5	34
126	<i>Arabidopsis thaliana</i> RNase H2 Deficiency Counteracts the Needs for the WEE1 Checkpoint Kinase but Triggers Genome Instability Â. Plant Cell, 2014, 26, 3680-3692.	3.1	33

#	Article	IF	CITATIONS
127	Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Current Biology, 2022, 32, 1883-1894.e7.	1.8	31
128	Identification of novel cyclinâ€dependent kinases interacting with the CKS1 protein of Arabidopsis1. Journal of Experimental Botany, 2001, 52, 1381-1382.	2.4	30
129	A conditional mutation in <i>Arabidopsis thaliana</i> separase induces chromosome non-disjunction, aberrant morphogenesis and cyclin B1;1 stability. Development (Cambridge), 2010, 137, 953-961.	1.2	30
130	The Cyclin-Dependent Kinase Inhibitor KRP6 Induces Mitosis and Impairs Cytokinesis in Giant Cells Induced by Plant-Parasitic Nematodes in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 2633-2647.	3.1	30
131	The <i>Arabidopsis</i> GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
132	Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Current Biology, 2021, 31, 3221-3232.e9.	1.8	29
133	Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1009.	1.7	27
134	Eternal Youth, the Fate of Developing Arabidopsis Leaves upon Rhodococcus fascians Infection Â. Plant Physiology, 2009, 149, 1387-1398.	2.3	26
135	Cyclin-dependent kinase activity retains the shoot apical meristem cells in an undifferentiated state. Plant Journal, 2010, 64, no-no.	2.8	26
136	Genome Editing-Based Engineering of CESA3 Dual Cellulose-Inhibitor-Resistant Plants. Plant Physiology, 2019, 180, 827-836.	2.3	26
137	Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. Plant Cell, 2021, 33, 1361-1380.	3.1	26
138	Mutational analysis of twoArabidopsis thalianacyclin-dependent kinases in fission yeast. FEBS Letters, 1999, 446, 182-188.	1.3	25
139	Identification of proteins interacting with theArabidopsisCdc2aAt protein. Journal of Experimental Botany, 1997, 48, 2113-2114.	2.4	24
140	Identification of novel cyclin-dependent kinases interacting with the CKS1 protein of Arabidopsis. Journal of Experimental Botany, 2001, 52, 1381-1382.	2.4	24
141	The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. Plant Signaling and Behavior, 2010, 5, 1613-1618.	1.2	24
142	Evidence for a Role of <i>Arabidopsis</i> CDT1 Proteins in Gametophyte Development and Maintenance of Genome Integrity. Plant Cell, 2012, 24, 2779-2791.	3.1	24
143	Suppressor of Gamma Response 1 Modulates the DNA Damage Response and Oxidative Stress Response in Leaves of Cadmium-Exposed Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 366.	1.7	24
144	Tissue-Specific Control of the Endocycle by the Anaphase Promoting Complex/Cyclosome Inhibitors UVI4 and DEL1. Plant Physiology, 2017, 175, 303-313.	2.3	23

#	Article	IF	CITATIONS
145	The Cyclin CYCA3;4 Is a Postprophase Target of the APC/C ^{CCS52A2} E3-Ligase Controlling Formative Cell Divisions in Arabidopsis. Plant Cell, 2020, 32, 2979-2996.	3.1	22
146	Associated Bacteria Affect Sexual Reproduction by Altering Gene Expression and Metabolic Processes in a Biofilm Inhabiting Diatom. Frontiers in Microbiology, 2019, 10, 1790.	1.5	21
147	Distinctive Growth and Transcriptional Changes of the Diatom Seminavis robusta in Response to Quorum Sensing Related Compounds. Frontiers in Microbiology, 2020, 11, 1240.	1.5	21
148	Classical Anticytokinins Do Not Interact with Cytokinin Receptors but Inhibit Cyclin-dependent Kinases. Journal of Biological Chemistry, 2007, 282, 14356-14363.	1.6	20
149	Arabidopsis <i><scp>COPPER MODIFIED RESISTANCE</scp>1/<scp>PATRONUS</scp>1</i> is essential for growth adaptation to stress and required for mitotic onset control. New Phytologist, 2016, 209, 177-191.	3.5	19
150	Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death. Plant Cell, 2021, 33, 2662-2684.	3.1	19
151	Multiple mechanisms explain how reduced <i><scp>KRP</scp></i> expression increases leaf size of <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 221, 1345-1358.	3.5	18
152	Increased leakiness of the tetracyclineâ€inducible Tripleâ€Op promoter in dividing cells renders it unsuitable for high inducible levels of a dominant negative CDC2aAt gene. Journal of Experimental Botany, 2000, 51, 1647-1653.	2.4	17
153	Physiological Relevance and Molecular Control of the Endocycle in Plants. , 0, , 227-248.		17
154	Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom <i>Seminavis robusta</i> . ISME Journal, 2021, 15, 562-576.	4.4	17
155	Plant DNA Polymerases. International Journal of Molecular Sciences, 2019, 20, 4814.	1.8	16
156	Protein degradation during the diatom cell cycle: Annotation and transcriptional analysis of SCF and APC/C ubiquitin ligase genes in Phaeodactylum tricornutum. Marine Genomics, 2014, 14, 39-46.	0.4	15
157	Exploiting cell cycle inhibitor genes of the <i>KRP</i> family to control rootâ€knot nematode induced feeding sites in plants. Plant, Cell and Environment, 2017, 40, 1174-1188.	2.8	15
158	Diurnal transcript profiling of the diatom <i>Seminavis robusta</i> reveals adaptations to a benthic lifestyle. Plant Journal, 2021, 107, 315-336.	2.8	15
159	Deregulation of the Replisome Factor MCMBP Prompts Oncogenesis in Colorectal Carcinomas through Chromosomal Instability. Neoplasia, 2014, 16, 694-709.	2.3	14
160	Functional characterization of the diatom cyclin-dependent kinase A2 as a mitotic regulator reveals plant-like properties in a non-green lineage. BMC Plant Biology, 2015, 15, 86.	1.6	14
161	The plant WEE1 kinase is involved in checkpoint control activation in nematodeâ€induced galls. New Phytologist, 2020, 225, 430-447	3.5	12
162	G2/M-checkpoint activation in <i>fasciata1</i> rescues an aberrant S-phase checkpoint but causes genome instability. Plant Physiology, 2021, 186, 1893-1907.	2.3	11

#	Article	IF	CITATIONS
163	The Plant Anaphase-Promoting Complex/Cyclosome. Annual Review of Cell and Developmental Biology, 2022, 38, 25-48.	4.0	11
164	Identification of putative cancer genes through data integration and comparative genomics between plants and humans. Cellular and Molecular Life Sciences, 2012, 69, 2041-2055.	2.4	10
165	Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem. Protoplasma, 2013, 250, 955-961.	1.0	10
166	Pars Pro Toto: Every Single Cell Matters. Frontiers in Plant Science, 2021, 12, 656825.	1.7	8
167	The Discovery of Plant D-Type Cyclins. Plant Cell, 2019, 31, 1194-1195.	3.1	7
168	A long and stressful day: Photoperiod shapes aluminium tolerance in plants. Journal of Hazardous Materials, 2022, 432, 128704.	6.5	7
169	Three-dimensional quantitative analysis of the Arabidopsis quiescent centre. Journal of Experimental Botany, 2021, 72, 6789-6800.	2.4	6
170	Cyclin-Dependent Kinases and Cell Division in Plants: The Nexus. Plant Cell, 1999, 11, 509.	3.1	5
171	Recombinant Production of the p10CKS1AtProtein fromArabidopsis thalianaand13C and15N Double-Isotopic Enrichment for NMR Studies. Protein Expression and Purification, 1999, 16, 144-151.	0.6	5
172	A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana. Protoplasma, 2022, 259, 277-290.	1.0	5
173	Light intensity and spectral composition drive reproductive success in the marine benthic diatom Seminavis robusta. Scientific Reports, 2021, 11, 17560.	1.6	4
174	Lack of RNase H2 activity rescues HU-sensitivity of WEE1 deficient plants. Plant Signaling and Behavior, 2015, 10, e1001226.	1.2	4
175	Hitting pause on the cell cycle. ELife, 2019, 8, .	2.8	4
176	A Mutation in DNA Polymerase $\hat{I}\pm$ Rescues WEE1KO Sensitivity to HU. International Journal of Molecular Sciences, 2021, 22, 9409.	1.8	3
177	Crystal structure of <i>Arabidopsis thaliana</i> casein kinase 2 α1. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 182-191.	0.4	3
178	Cell cycle control in <i>Arabidopsis thaliana</i> . Acta Botanica Gallica, 1993, 140, 583-590.	0.9	0
179	Characterization of microstructure and cell wall components of Arabidopsis thaliana overexpressing cyclin-dependent kinase inhibitor 2. Phytochemistry Reviews, 2002, 1, 93-99.	3.1	0