
Ruud H P Wilbers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. Frontiers in Plant Science, 2022, 13, 882835.	3.6	2
2	Tumor Necrosis Factor and Schistosoma mansoni egg antigen omega-1 shape distinct aspects of the early egg-induced granulomatous response. PLoS Neglected Tropical Diseases, 2021, 15, e0008814.	3.0	7
3	β-Hexosaminidases Along the Secretory Pathway of Nicotiana benthamiana Have Distinct Specificities Toward Engineered Helminth N-Glycans on Recombinant Glycoproteins. Frontiers in Plant Science, 2021, 12, 638454.	3.6	7
4	Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology, 2021, 31, 1005-1017.	2.5	3
5	Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
6	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
7	The helminth glycoprotein omegaâ€1 improves metabolic homeostasis in obese mice through type 2 immunityâ€independent inhibition of food intake. FASEB Journal, 2021, 35, e21331.	0.5	20
8	Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Frontiers in Molecular Biosciences, 2021, 8, 807821.	3.5	5
9	Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Scientific Reports, 2020, 10, 18528.	3.3	14
10	Crystal structure of Brugia malayi venom allergen-like protein-1 (BmVAL-1), a vaccine candidate for lymphatic filariasis. International Journal for Parasitology, 2018, 48, 371-378.	3.1	17
11	Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. International Journal for Parasitology, 2018, 48, 359-369.	3.1	18
12	Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. Journal of Biological Chemistry, 2018, 293, 10042-10058.	3.4	20
13	Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathogens, 2018, 14, e1007300.	4.7	41
14	Granulocyte-macrophage colony-stimulating factor negatively regulates early IL-10-mediated responses. Future Science OA, 2018, 4, FSO288.	1.9	2
15	Production and glyco-engineering of immunomodulatory helminth glycoproteins in plants. Scientific Reports, 2017, 7, 45910.	3.3	54
16	Feeding preference as a main determinant of microscale patchiness among terrestrial nematodes. Molecular Ecology Resources, 2017, 17, 1257-1270.	4.8	33
17	Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO Journal, 2017, 36, 2404-2418.	7.8	80
18	Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathogens, 2017, 13, e1006539.	4.7	78

RUUD H P WILBERS

#	Article	IF	CITATIONS
19	Re-evaluation of IL-10 signaling reveals novel insights on the contribution of the intracellular domain of the IL-10R2 chain. PLoS ONE, 2017, 12, e0186317.	2.5	18
20	Physical Interaction of T Cells with Dendritic Cells Is Not Required for the Immunomodulatory Effects of the Edible Mushroom Agaricus subrufescens. Frontiers in Immunology, 2016, 7, 519.	4.8	9
21	Coâ€expression of the protease furin in <i>Nicotiana benthamiana</i> leads to efficient processing of latent transforming growth factorâ€Î²1 into a biologically active protein. Plant Biotechnology Journal, 2016, 14, 1695-1704.	8.3	34
22	The Nâ€glycan on Asn54 affects the atypical Nâ€glycan composition of plantâ€produced interleukinâ€⊋2, but does not influence its activity. Plant Biotechnology Journal, 2016, 14, 670-681.	8.3	13
23	Assessing the immunomodulatory potential of highâ€molecularâ€weight extracts from mushrooms; an assay based on <scp>THP</scp> â€1 macrophages. Journal of the Science of Food and Agriculture, 2015, 95, 344-350.	3.5	7
24	Transient Expression of Secretory IgA In Planta is Optimal Using a Multi-Gene Vector and may be Further Enhanced by Improving Joining Chain Incorporation. Frontiers in Plant Science, 2015, 6, 1200.	3.6	18
25	Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors. PLoS Pathogens, 2014, 10, e1004569.	4.7	111
26	Monomeric <scp>I</scp> g <scp>A</scp> can be produced <i>in planta</i> as efficient as <scp>I</scp> g <scp>G</scp> , yet receives different <i><scp>N</scp></i> â€glycans. Plant Biotechnology Journal, 2014, 12, 1333-1342.	8.3	21
27	Structural Determinants at the Interface of the ARC2 and Leucine-Rich Repeat Domains Control the Activation of the Plant Immune Receptors Rx1 and Gpa2 Â Â Â. Plant Physiology, 2013, 162, 1510-1528.	4.8	73
28	Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10119-10124.	7.1	246
29	3D Domain Swapping Causes Extensive Multimerisation of Human Interleukin-10 When Expressed In Planta. PLoS ONE, 2012, 7, e46460.	2.5	19