Scott D Guzewich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
2	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
3	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
4	lsotope Ratios of H, C, and O in CO ₂ and H ₂ O of the Martian Atmosphere. Science, 2013, 341, 260-263.	12.6	241
5	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
6	The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Science Reviews, 2017, 212, 295-338.	8.1	153
7	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	4.0	138
8	Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus, 2017, 291, 203-231.	2.5	119
9	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
10	Highâ€altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer. Journal of Geophysical Research E: Planets, 2013, 118, 1177-1194.	3.6	60
11	Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover. Geophysical Research Letters, 2019, 46, 9448-9456.	4.0	58
12	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	8.1	57
13	Mars Orbiter Camera climatology of textured dust storms. Icarus, 2015, 258, 1-13.	2.5	54
14	Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder. Geophysical Research Letters, 2014, 41, 3375-3381.	4.0	47
15	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
16	Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder. Journal of Geophysical Research, 2012, 117, .	3.3	45
17	Atmospheric tides in Gale Crater, Mars. Icarus, 2016, 268, 37-49.	2.5	45
18	Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature, 2017, 541, 188-190.	27.8	43

SCOTT D GUZEWICH

#	Article	IF	CITATIONS
19	The vertical distribution of Martian aerosol particle size. Journal of Geophysical Research E: Planets, 2014, 119, 2694-2708.	3.6	42
20	Thermal tides during the 2001 Martian globalâ€scale dust storm. Journal of Geophysical Research E: Planets, 2014, 119, 506-519.	3.6	42
21	Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 1899-1912.	3.6	40
22	The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation. Journal of Geophysical Research E: Planets, 2013, 118, 980-993.	3.6	37
23	Martian polar vortices: Comparison of reanalyses. Journal of Geophysical Research E: Planets, 2016, 121, 1770-1785.	3.6	35
24	The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46, 9430-9438.	4.0	31
25	An investigation of dust storms observed with the Mars Color Imager. Icarus, 2017, 289, 199-213.	2.5	28
26	What causes Mars' annular polar vortices?. Geophysical Research Letters, 2017, 44, 71-78.	4.0	28
27	The effect of dust on the martian polar vortices. Icarus, 2016, 278, 100-118.	2.5	26
28	The Vertical Dust Profile Over Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2779-2792.	3.6	22
29	Changes in Soil Cohesion Due to Water Vapor Exchange: A Proposed Dryâ€Flow Trigger Mechanism for Recurring Slope Lineae on Mars. Geophysical Research Letters, 2020, 47, e2020GL087618.	4.0	22
30	The cascade from local to global dust storms on Mars: Temporal and spatial thresholds on thermal and dynamical feedback. Icarus, 2018, 302, 514-536.	2.5	21
31	Seasonal Variation in Martian Water Ice Cloud Particle Size. Journal of Geophysical Research E: Planets, 2019, 124, 636-643.	3.6	21
32	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. Astrophysical Journal, 2019, 884, 75.	4.5	18
33	General circulation models of the dynamics of Pluto's volatile transport on the eve of the New Horizons encounter. Icarus, 2015, 254, 306-323.	2.5	17
34	The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.	3.6	16
35	Visibility and Lineâ€ofâ€Sight Extinction Estimates in Gale Crater During the 2018/MY34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 9414-9421.	4.0	13
36	Understanding the water cycle above the north polar cap on Mars using MRO CRISM retrievals of water vapor. Icarus, 2019, 321, 722-735.	2.5	13

#	Article	IF	CITATIONS
37	Design of a direct-detection wind and aerosol lidar for mars orbit. CEAS Space Journal, 2020, 12, 149-162.	2.3	12
38	3D Simulations of the Early Martian Hydrological Cycle Mediated by a H ₂ O ₂ Greenhouse. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006825.	3.6	12
39	Gravity Wave Observations by the Mars Science Laboratory REMS Pressure Sensor and Comparison With Mesoscale Atmospheric Modeling With MarsWRF. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006907.	3.6	11
40	Seasonal variations in Pluto's atmospheric tides. Icarus, 2015, 246, 247-267.	2.5	10
41	Estimating the altitudes of Martian water-ice clouds above the Mars Science Laboratory rover landing site. Planetary and Space Science, 2020, 182, 104785.	1.7	9
42	Studies of the 2018/Mars Year 34 Planetâ€Encircling Dust Storm. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006700.	3.6	9
43	IRTF/CSHELL mapping of atmospheric HDO, H2O and D/H on Mars during northern summer. Icarus, 2019, 330, 204-216.	2.5	8
44	Constraints on Mars Aphelion Cloud Belt phase function and ice crystal geometries. Planetary and Space Science, 2019, 168, 62-72.	1.7	8
45	Atmospheric transport into polar regions on Mars in different orbital epochs. Icarus, 2020, 347, 113816.	2.5	8
46	Vertical and horizontal heterogeneity of atmospheric dust loading in northern Gale Crater, Mars. Icarus, 2019, 329, 197-206.	2.5	6
47	Aphelion Cloud Belt phase function investigations with Mars Color Imager (MARCI). Planetary and Space Science, 2020, 184, 104840.	1.7	6
48	Martian Dust. , 2022, , 637-666.		6
49	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
50	The Impact of Planetary Rotation Rate on the Reflectance and Thermal Emission Spectrum of Terrestrial Exoplanets around Sunlike Stars. Astrophysical Journal, 2020, 893, 140.	4.5	5
51	Limits on Runoff Episode Duration for Early Mars: Integrating Lake Hydrology and Climate Models. Geophysical Research Letters, 2021, 48, e2021GL093523.	4.0	5
52	Volcanic Climate Warming Through Radiative and Dynamical Feedbacks of SO ₂ Emissions. Geophysical Research Letters, 2022, 49, .	4.0	5
53	The Lineâ€ofâ€Sight Extinction Record at Gale Crater as Observed by MSL's Mastcam and Navcam through â^1⁄42,500 Sols. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006465.	3.6	3
54	Detections of Water Vapor Increase Over the North Polar Troughs on Mars as Observed by CRISM. Geophysical Research Letters, 2020, 47, e2019GL086195.	4.0	3

#	Article	IF	CITATIONS
55	Mission to the Trojan asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise. Planetary and Space Science, 2013, 76, 68-82.	1.7	1