Laura Lossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731095/publications.pdf

Version: 2024-02-01

434195 567281 4,226 31 15 31 citations h-index g-index papers 31 31 31 11018 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The concept of intrinsic versus extrinsic apoptosis. Biochemical Journal, 2022, 479, 357-384.	3.7	76
2	Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Annals of Anatomy, 2022, 244, 151978.	1.9	3
3	Mesenchymal stem cell conditioned medium increases glial reactivity and decreases neuronal survival in spinal cord slice cultures. Biochemistry and Biophysics Reports, 2021, 26, 100976.	1.3	4
4	Association of Caspase 3 Activation and H2AX \hat{I}^3 Phosphorylation in the Aging Brain: Studies on Untreated and Irradiated Mice. Biomedicines, 2021, 9, 1166.	3.2	9
5	The Phosphorylated Form of the Histone H2AX (\hat{I}^3 H2AX) in the Brain from Embryonic Life to Old Age. Molecules, 2021, 26, 7198.	3.8	16
6	Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cellular and Molecular Neurobiology, 2019, 39, 833-856.	3 . 3	2
7	The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment?. Journal of Clinical Medicine, 2019, 8, 2088.	2.4	19
8	Caspase-3 Mediated Cell Death in the Normal Development of the Mammalian Cerebellum. International Journal of Molecular Sciences, 2018, 19, 3999.	4.1	123
9	The Use of ex Vivo Rodent Platforms in Neuroscience Translational Research With Attention to the 3Rs Philosophy. Frontiers in Veterinary Science, 2018, 5, 164.	2.2	22
10	Alterations of Cell Proliferation and Apoptosis in the Hypoplastic Reeler Cerebellum. Frontiers in Cellular Neuroscience, 2016, 10, 141.	3.7	9
11	Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Molecular Neurodegeneration, 2016, 11, 34.	10.8	23
12	Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Annals of Anatomy, 2016, 205, 75-84.	1.9	40
13	The number of Purkinje neurons and their topology in the cerebellar vermis of normal and reln haplodeficient mouse. Annals of Anatomy, 2016, 207, 68-75.	1.9	10
14	Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Annals of Anatomy, 2016, 204, 11-28.	1.9	61
15	Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice. Annals of Anatomy, 2016, 207, 76-90.	1.9	16
16	Neuronal Cell Death: An Overview of Its Different Forms in Central and Peripheral Neurons. Methods in Molecular Biology, 2015, 1254, 1-18.	0.9	18
17	Real-Time Visualization of Caspase-3 Activation by Fluorescence Resonance Energy Transfer (FRET). Methods in Molecular Biology, 2015, 1254, 99-113.	0.9	5
18	Transfection Techniques and Combined Immunocytochemistry in Cell Cultures and Organotypic Slices. Neuromethods, 2015, , 329-355.	0.3	6

#	Article	IF	CITATIONS
19	Phosphorylation of Histone H2AX in the Mouse Brain from Development to Senescence. International Journal of Molecular Sciences, 2014, 15, 1554-1573.	4.1	33
20	Post-natal development of the Reeler mouse cerebellum: An ultrastructural study. Annals of Anatomy, 2014, 196, 224-235.	1.9	13
21	Context-Dependent Toxicity of Amyloid-β Peptides on Mouse Cerebellar Cells. Journal of Alzheimer's Disease, 2012, 30, 41-51.	2.6	3
22	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
23	Autophagy Regulates the Post-Translational Cleavage of BCL-2 and Promotes Neuronal Survival. Scientific World Journal, The, 2010, 10, 924-929.	2.1	14
24	Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival. Developmental Neurobiology, 2009, 69, 855-870.	3.0	20
25	Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Progress in Neurobiology, 2009, 88, 221-245.	5.7	137
26	BDNF as a pain modulator. Progress in Neurobiology, 2008, 85, 297-317.	5.7	304
27	Apoptosis of the cerebellar neurons. Histology and Histopathology, 2008, 23, 367-80.	0.7	20
28	Molecular morphology of neuronal apoptosis: Analysis of caspase 3 activation during postnatal development of mouse cerebellar cortex. Journal of Molecular Histology, 2004, 35, 621-629.	2.2	26
29	In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit. Journal of Neurobiology, 2004, 60, 437-452.	3.6	15
30	Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex. Italian Journal of Anatomy and Embryology, 2002, 107, 117-25.	0.1	13
31	Apoptosis of undifferentiated progenitors and granule cell precursors in the postnatal human cerebellar cortex correlates with expression of BCL-2, ICE, and CPP32 proteins. Journal of Comparative Neurology, 1998, 399, 359-372.	1.6	44