Mikael S. Lindström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730916/publications.pdf

Version: 2024-02-01

49 papers 3,228 citations

30 h-index 214800 47 g-index

51 all docs 51 docs citations

51 times ranked

5116 citing authors

#	Article	IF	CITATIONS
1	NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochemistry Research International, 2011, 2011, 1-16.	3.3	250
2	Targeted Inactivation of Mdm2 RING Finger E3 Ubiquitin Ligase Activity in the Mouse Reveals Mechanistic Insights into p53 Regulation. Cancer Cell, 2007, 12, 355-366.	16.8	228
3	An ARF-Independent c-MYC-Activated Tumor Suppression Pathway Mediated by Ribosomal Protein-Mdm2 Interaction. Cancer Cell, 2010, 18, 231-243.	16.8	185
4	Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene, 2018, 37, 2351-2366.	5.9	181
5	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5. 9	156
6	Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochemical and Biophysical Research Communications, 2009, 379, 167-170.	2.1	152
7	Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 2016, 48, 1313-1324.	3. 3	150
8	PDGF and PDGF receptors in glioma. Upsala Journal of Medical Sciences, 2012, 117, 99-112.	0.9	142
9	Cancer-Associated Mutations in the MDM2 Zinc Finger Domain Disrupt Ribosomal Protein Interaction and Attenuate MDM2-Induced p53 Degradation. Molecular and Cellular Biology, 2007, 27, 1056-1068.	2.3	131
10	Transcription factor PROX1: its role in development and cancer. Cancer and Metastasis Reviews, 2012, 31, 793-805.	5.9	118
11	Ribosomal Protein S9 Is a Novel B23/NPM-binding Protein Required for Normal Cell Proliferation. Journal of Biological Chemistry, 2008, 283, 15568-15576.	3.4	107
12	Role of genetic and epigenetic changes in Burkitt lymphoma. Seminars in Cancer Biology, 2002, 12, 381-387.	9.6	98
13	Predictive Significance of the Alterations of p16INK4A, p14ARF, p53, and Proliferating Cell Nuclear Antigen Expression in the Progression of Cervical Cancer. Clinical Cancer Research, 2004, 10, 2407-2414.	7.0	96
14	p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene, 2001, 20, 2171-2177.	5.9	88
15	p53 -Dependent and -Independent Nucleolar Stress Responses. Cells, 2012, 1, 774-798.	4.1	85
16	Immunolocalization of Human p14ARF to the Granular Component of the Interphase Nucleolus. Experimental Cell Research, 2000, 256, 400-410.	2.6	79
17	Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene, 2003, 22, 4993-5005.	5.9	78
18	Silencing of Ribosomal Protein S9 Elicits a Multitude of Cellular Responses Inhibiting the Growth of Cancer Cells Subsequent to p53 Activation. PLoS ONE, 2010, 5, e9578.	2.5	71

#	Article	IF	CITATIONS
19	Putting a Finger on Growth Surveillance: Insight into MDM2 Zinc Finger-Ribosomal Protein Interactions. Cell Cycle, 2007, 6, 434-437.	2.6	60
20	Essential Role of the B23/NPM Core Domain in Regulating ARF Binding and B23 Stability. Journal of Biological Chemistry, 2006, 281, 18463-18472.	3.4	58
21	MdmX Binding to ARF Affects Mdm2 Protein Stability and p53 Transactivation. Journal of Biological Chemistry, 2001, 276, 25336-25341.	3.4	54
22	Loss of Nucleolar Histone Chaperone NPM1 Triggers Rearrangement of Heterochromatin and Synergizes with a Deficiency in DNA Methyltransferase DNMT3A to Drive Ribosomal DNA Transcription. Journal of Biological Chemistry, 2014, 289, 34601-34619.	3.4	51
23	Expression of PROX1 Is a Common Feature of High-Grade Malignant Astrocytic Gliomas. Journal of Neuropathology and Experimental Neurology, 2010, 69, 129-138.	1.7	47
24	p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death and Differentiation, 2022, 29, 972-982.	11.2	47
25	B23 and ARF: Friends or Foes?. Cell Biochemistry and Biophysics, 2006, 46, 79-90.	1.8	44
26	p16INK4A and p14ARF expression pattern by immunohistochemistry in human papillomavirus-related cervical neoplasia. Modern Pathology, 2005, 18, 629-637.	5.5	41
27	NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Scientific Reports, 2015, 5, 16495.	3.3	40
28	PROX1 is a predictor of survival for gliomas WHO grade II. British Journal of Cancer, 2011, 104, 1747-1754.	6.4	36
29	Disruption of the 5S RNP–Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia, 2015, 29, 2221-2229.	7.2	35
30	The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death and Differentiation, 2020, 27, 773-789.	11.2	35
31	Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers, 2022, 14, 2126.	3.7	31
32	Inactivation of Myc-induced p53-dependent apoptosis in human tumors. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 133-137.	4.9	27
33	Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors. Journal of Oncology, 2011, 2011, 1-11.	1.3	27
34	mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biology and Therapy, 2014, 15, 1499-1514.	3.4	27
35	The exon-junction complex helicase elF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Science Advances, 2021, 7, .	10.3	25
36	Brain Abnormalities and Glioma-Like Lesions in Mice Overexpressing the Long Isoform of PDGF-A in Astrocytic Cells. PLoS ONE, 2011, 6, e18303.	2.5	21

#	Article	IF	CITATIONS
37	Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin. PLoS ONE, 2012, 7, e52476.	2.5	20
38	Thermal Proteome Profiling Identifies Oxidative-Dependent Inhibition of the Transcription of Major Oncogenes as a New Therapeutic Mechanism for Select Anticancer Compounds. Cancer Research, 2020, 80, 1538-1550.	0.9	19
39	A melanoma-predisposing germline CDKN2A mutation with functional significance for both p16 and p14ARF. Cancer Letters, 2002, 180, 211-221.	7.2	15
40	Reduced Expression of PROX1 Transitions Glioblastoma Cells into a Mesenchymal Gene Expression Subtype. Cancer Research, 2018, 78, 5901-5916.	0.9	12
41	SFRP2 induces a mesenchymal subtype transition by suppression of SOX2 in glioblastoma. Oncogene, 2021, 40, 5066-5080.	5.9	12
42	DNA damage-induced dynamic changes in abundance and cytosol-nuclear translocation of proteins involved in translational processes, metabolism, and autophagy. Cell Cycle, 2018, 17, 2146-2163.	2.6	9
43	Uncoupling of the ERÎ \pm regulated morphological phenotype from the cancer stem cell phenotype in human breast cancer cell lines. Biochemical and Biophysical Research Communications, 2011, 405, 581-587.	2.1	8
44	The Nucleolus as a Stress Response Organelle. , 2013, , 251-273.		8
45	Expanding the scope of candidate prognostic marker IGFBP2 in glioblastoma. Bioscience Reports, 2019, 39, .	2.4	8
46	Identification of functionally distinct and interacting cancer cell subpopulations from glioblastoma with intratumoral genetic heterogeneity. Neuro-Oncology Advances, 2020, 2, vdaa061.	0.7	7
47	Human cytomegalovirus and Herpes Simplex type I virus can engage RNA polymerase I for transcription of immediate early genes. Oncotarget, 2017, 8, 96536-96552.	1.8	6
48	p16INK4aand laminin-5 \hat{i} 32 chain expression during the progression of cervical neoplasia. Acta Oncol \hat{A} 3 gica, 2006, 45, 676-684.	1.8	3
49	Abstract 2082: Control and function of the PROX1 transcription factor in malignant glioma. , 2015, , .		O