
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730866/publications.pdf Version: 2024-02-01

FELKE LONGELANS

#	Article	IF	CITATIONS
1	More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 2017, 12, e0185809.	2.5	2,176
2	Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 2014, 511, 341-343.	27.8	761
3	Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 230-235.	7.1	290
4	Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 2014, 5, 99-110.	5.2	231
5	Loss of Plant Species Diversity Reduces Soil Erosion Resistance. Ecosystems, 2015, 18, 881-888.	3.4	222
6	Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. Journal of Ecology, 2012, 100, 6-15.	4.0	182
7	Is the insect apocalypse upon us? How to find out. Biological Conservation, 2020, 241, 108327.	4.1	167
8	Functional traits as predictors of vital rates across the life cycle of tropical trees. Functional Ecology, 2016, 30, 168-180.	3.6	152
9	Dispersal, demography and spatial population models for conservation and control management. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 153-170.	2.7	139
10	Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. Journal of Ecology, 2005, 93, 1214-1225.	4.0	133
11	Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conservation and Diversity, 2020, 13, 127-139.	3.0	130
12	Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. Journal of Ecology, 2012, 100, 76-87.	4.0	126
13	Data gaps and opportunities for comparative and conservation biology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9658-9664.	7.1	115
14	Space versus time variation in the population dynamics of three co-occurring perennial herbs. Journal of Ecology, 2005, 93, 681-692.	4.0	97
15	Integral Projection Models for trees: a new parameterization method and a validation of model output. Journal of Ecology, 2010, 98, 345-355.	4.0	94
16	<i><scp>IPM</scp>pack</i> : an <scp>R</scp> package for integral projection models. Methods in Ecology and Evolution, 2013, 4, 195-200.	5.2	93
17	Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). , 2001, 152, 67-78.		89
18	Modeling Seed Dispersal by Wind in Herbaceous Species. Oikos, 1999, 87, 362.	2.7	88

#	Article	IF	CITATIONS
19	Sizeâ€dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. Journal of Ecology, 2010, 98, 1204-1215.	4.0	85
20	Plant populations track rather than buffer climate fluctuations. Ecology Letters, 2010, 13, 736-743.	6.4	80
21	Dispersal and demography contributions to population spread of <i>Carduus nutans </i> in its native and invaded ranges. Journal of Ecology, 2008, 96, 687-697.	4.0	77
22	Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	73
23	Emerging technologies revolutionise insect ecology and monitoring. Trends in Ecology and Evolution, 2022, 37, 872-885.	8.7	72
24	Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB PLANTS, 2019, 11, plz016.	2.3	71
25	Importance of individual and environmental variation for invasive species spread: a spatial integral projection model. Ecology, 2011, 92, 86-97.	3.2	67
26	Optimal management strategies to control local population growth or population spread may not be the same. Ecological Applications, 2010, 20, 1148-1161.	3.8	63
27	Release thresholds strongly determine the range of seed dispersal by wind. Ecological Modelling, 2005, 185, 93-103.	2.5	59
28	Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecologia, 2010, 163, 695-706.	2.0	57
29	Region versus site variation in the population dynamics of three shortâ€lived perennials. Journal of Ecology, 2010, 98, 279-289.	4.0	55
30	Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. Journal of Ecology, 2018, 106, 781-794.	4.0	53
31	Advancing restoration ecology: A new approach to predict time to recovery. Journal of Applied Ecology, 2019, 56, 225-234.	4.0	51
32	What controls the population dynamics of the invasive thistleCarduus nutansin its native range?. Journal of Applied Ecology, 2006, 43, 877-886.	4.0	50
33	Strict mast fruiting for a tropical dipterocarp tree: a demographic cost-benefit analysis of delayed reproduction and seed predation. Journal of Ecology, 2011, 99, 1033-1044.	4.0	50
34	The interplay between shifts in biomass allocation and costs of reproduction in four grassland perennials under simulated successional change. Oecologia, 2006, 147, 369-378.	2.0	48
35	Signs of stabilisation and stable coexistence. Ecology Letters, 2019, 22, 1957-1975.	6.4	48
36	Carnivora Population Dynamics Are as Slow and as Fast as Those of Other Mammals: Implications for Their Conservation. PLoS ONE, 2013, 8, e70354.	2.5	47

#	Article	IF	CITATIONS
37	Are the best dispersers the best colonizers? Seed mass, dispersal and establishment in Carduus thistles. Evolutionary Ecology, 2011, 25, 155-169.	1.2	46
38	Seed release by invasive thistles: the impact of plant and environmental factors. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2457-2464.	2.6	44
39	Population size and habitat quality affect genetic diversity and fitness in the clonal herb Cirsium dissectum. Oecologia, 2009, 159, 59-68.	2.0	41
40	The Evolution of Variance Control. Trends in Ecology and Evolution, 2020, 35, 22-33.	8.7	40
41	Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2831-2840.	2.6	39
42	Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology, 2013, 94, 1859-1870.	3.2	38
43	Seed limitation restricts population growth in shaded populations of a perennial woodland orchid. Ecology, 2010, 91, 119-129.	3.2	34
44	Flexible life history responses to flower and rosette bud removal in three perennial herbs. Oikos, 2004, 105, 159-167.	2.7	33
45	Warming Increases the Spread of an Invasive Thistle. PLoS ONE, 2011, 6, e21725.	2.5	32
46	Establishment and spread of founding populations of an invasive thistle: the role of competition and seed limitation. Biological Invasions, 2007, 9, 317-325.	2.4	31
47	Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 2015, 6, 1007-1017.	5.2	31
48	A unifying gravity framework for dispersal. Theoretical Ecology, 2015, 8, 207-223.	1.0	30
49	<scp>trackdem</scp> : Automated particle tracking to obtain population counts and size distributions from videos in <scp>r</scp> . Methods in Ecology and Evolution, 2018, 9, 965-973.	5.2	27
50	Disentangling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four frameworks. Methods in Ecology and Evolution, 2017, 8, 75-85.	5.2	26
51	Unrecognized impact of a biocontrol agent on the spread rate of an invasive thistle. Ecological Applications, 2014, 24, 1178-1187.	3.8	25
52	The temperatureâ€size rule in <i>Daphnia magna</i> across different genetic lines and ontogenetic stages: Multiple patterns and mechanisms. Ecology and Evolution, 2018, 8, 3828-3841.	1.9	25
53	Demographic vulnerability of the clonal and endangered meadow thistle. Plant Ecology, 2008, 198, 225-240.	1.6	23
54	Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia, 2016, 181, 435-448.	2.0	23

#	Article	IF	CITATIONS
55	Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. American Naturalist, 2017, 189, 297-314.	2.1	23
56	A host–parasite model explains variation in liana infestation among coâ€occurring tree species. Journal of Ecology, 2018, 106, 2435-2445.	4.0	23
57	Frost and forest stand effects on the population dynamics of Asplenium scolopendrium. Population Ecology, 2010, 52, 211-222.	1.2	20
58	Plant spatial arrangement affects projected invasion speeds of two invasive thistles. Oikos, 2010, 119, 1462-1468.	2.7	20
59	Continuous and cumulative acidification and N deposition induce P limitation of the micro-arthropod soil fauna of mineral-poor dry heathlands. Soil Biology and Biochemistry, 2018, 119, 128-134.	8.8	20
60	Populationâ€level responses to temperature, density and clonal differences in <i>Daphnia magna</i> as revealed by integral projection modelling. Functional Ecology, 2018, 32, 2407-2422.	3.6	20
61	Explaining variability in the production of seed and allergenic pollen by invasive Ambrosia artemisiifolia across Europe. Biological Invasions, 2018, 20, 1475-1491.	2.4	19
62	Bottlenecks and spatiotemporal variation in the sexual reproduction pathway of perennial meadow plants. Basic and Applied Ecology, 2006, 7, 71-81.	2.7	18
63	Assessing restoration success by predicting time to recovery—But by which metric?. Journal of Applied Ecology, 2020, 57, 390-401.	4.0	17
64	Elucidating the Population Dynamics of Japanese Knotweed Using Integral Projection Models. PLoS ONE, 2013, 8, e75181.	2.5	17
65	Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists. PLoS Computational Biology, 2015, 11, e1004140.	3.2	16
66	Long-term effects of liming on soil physico-chemical properties and micro-arthropod communities in Scotch pine forest. Biology and Fertility of Soils, 2019, 55, 675-683.	4.3	16
67	Shorebird feeding specialists differ in how environmental conditions alter their foraging time. Behavioral Ecology, 2020, 31, 371-382.	2.2	16
68	Time to cut: population models reveal how to mow invasive common ragweed cost-effectively. NeoBiota, 0, 39, 53-78.	1.0	16
69	Stochastic LTRE analysis of the effects of herbivory on the population dynamics of a perennial grassland herb. Oikos, 2012, 121, 211-218.	2.7	15
70	Scaling up phenotypic plasticity with hierarchical population models. Evolutionary Ecology, 2010, 24, 585-599.	1.2	14
71	Mortality limits used in wind energy impact assessment underestimate impacts of wind farms on bird populations. Ecology and Evolution, 2020, 10, 6274-6287.	1.9	14
72	Connecting foraging and roosting areas reveals how food stocks explain shorebird numbers. Estuarine, Coastal and Shelf Science, 2021, 259, 107458.	2.1	14

#	Article	IF	CITATIONS
73	Conceptualizing and quantifying body condition using structural equation modelling: A user guide. Journal of Animal Ecology, 2021, 90, 2478-2496.	2.8	14
74	Pimpinella saxifraga is maintained in road verges by mosaic management. Biological Conservation, 2010, 143, 899-907.	4.1	13
75	Seasonal survival and migratory connectivity of the Eurasian Oystercatcher revealed by citizen science. Auk, 2019, 136, .	1.4	13
76	Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agriculture, Ecosystems and Environment, 2022, 323, 107682.	5.3	13
77	Forest hoverfly community collapse: Abundance and species richness drop over four decades. Insect Conservation and Diversity, 2022, 15, 510-521.	3.0	13
78	Applications of particle image velocimetry for seed release studies. Ecology, 2010, 91, 2485-2492.	3.2	12
79	Watch your time step: trapping and tracking dispersal in autocorrelated environments. Methods in Ecology and Evolution, 2011, 2, 407-415.	5.2	12
80	Water loss from flower heads predicts seed release in two invasive thistles. Plant Ecology and Diversity, 2012, 5, 57-65.	2.4	12
81	Apparent breeding success drives longâ€ŧerm population dynamics of a migratory swan. Journal of Avian Biology, 2020, 51, .	1.2	11
82	Identifying drivers of pumpkinseed invasiveness using population models. Aquatic Invasions, 2014, 9, 315-326.	1.6	11
83	Searching for the causes of decline in the Dutch population of European Turtle Doves (<i>Streptopelia turtur</i>). Ibis, 2022, 164, 552-573.	1.9	10
84	Shipment and storage effects on the terminal velocity of seeds. Ecological Research, 2010, 25, 83-92.	1.5	9
85	The Effect of Consumers and Mutualists of Vaccinium membranaceum at Mount St. Helens: Dependence on Successional Context. PLoS ONE, 2011, 6, e26094.	2.5	9
86	The hidden cost of disturbance: Eurasian Oystercatchers (Haematopus ostralegus) avoid a disturbed roost site during the tourist season. Ibis, 0, , .	1.9	9
87	Sod cutting and soil biota effects on seedling performance. Acta Oecologica, 2009, 35, 651-656.	1.1	8
88	Effect of gut passage in fish on the germination speed of aquatic and riparian plants. Aquatic Botany, 2016, 132, 12-16.	1.6	8
89	Stochastic effects contribute to population fitness differences. Ecological Modelling, 2019, 408, 108760.	2.5	8
90	Comments to "Persistent problems in the construction of matrix population models― Ecological Modelling, 2020, 416, 108913.	2.5	8

#	Article	IF	CITATIONS
91	The demographic causes of population change vary across four decades in a longâ€lived shorebird. Ecology, 2022, 103, e3615.	3.2	8
92	Postâ€dispersal seed removal of <i>Carduus nutans</i> and <i>C. acanthoides</i> by insects and small mammals. Ecological Research, 2015, 30, 173-180.	1.5	7
93	Colour-ring wear and loss effects in citizen science mark-resighting studies. Avian Research, 2019, 10, .	1.2	7
94	Demographic responses underlying ecoâ€evolutionary dynamics as revealed with inverse modelling. Journal of Animal Ecology, 2019, 88, 768-779.	2.8	7
95	Relative contributions of fixed and dynamic heterogeneity to variation in lifetime reproductive success in kestrels (<scp><i>Falco tinnunculus</i></scp>). Population Ecology, 2020, 62, 408-424.	1.2	7
96	Smart Insect Cameras. Biodiversity Information Science and Standards, 0, 3, .	0.0	7
97	Spatiotemporal variation in disturbance impacts derived from simultaneous tracking of aircraft and shorebirds. Journal of Applied Ecology, 2020, 57, 2406-2418.	4.0	6
98	Predation and survival in reintroduced populations of the Common hamster Cricetus cricetus in the Netherlands. Mammalian Biology, 2020, 100, 569-579.	1.5	6
99	European badger habitat requirements in the Netherlands – combining ecological niche models with neighbourhood analysis. Wildlife Biology, 2018, 2018, 1-11.	1.4	6
100	Relating plant height to demographic rates and extinction vulnerability. Biological Conservation, 2018, 220, 104-111.	4.1	5
101	Rainfall and temperature change drive Arnica montana population dynamics at the Northern distribution edge. Oecologia, 2019, 191, 565-578.	2.0	5
102	Why timeâ€ i imited individuals can make populations more vulnerable to disturbance. Oikos, 2021, 130, 637-651.	2.7	4
103	Reply to Redlich etÂal.: Insect biomass and diversity do correlate, over time. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
104	Host–parasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates. Functional Ecology, 2022, 36, 485-499.	3.6	3
105	Chance, Variation and the Nature of Causality in Ecological Communities. The Frontiers Collection, 2016, , 197-214.	0.2	2
106	Love thy neighbour?—Spatial variation in density dependence of nest survival in relation to predator community. Diversity and Distributions, 0, , .	4.1	2
107	Integrated population modeling identifies low duckling survival as a key driver of decline in a European population of the Mallard. Condor, 2022, 124, .	1.6	2
108	Reproduction probabilities and size distributions of the smooth snake Coronella austriaca in the Netherlands and Norway. Amphibia - Reptilia, 2020, 42, 167-178.	0.5	1

#	Article	IF	CITATIONS
109	Efficient use of demographic data: integrated population models. , 2021, , 245-256.		1
110	Stateâ€dependent environmental sensitivity of reproductive success and survival in a shorebird. Ibis, 0, ,	1.9	0