Jason W Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730087/publications.pdf

Version: 2024-02-01

94433 118850 7,977 61 37 62 citations h-index g-index papers 63 63 63 10529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration. Science, 2003, 300, 1749-1751.	12.6	1,236
2	Somatic Mutations in <i>UBA1</i> and Severe Adult-Onset Autoinflammatory Disease. New England Journal of Medicine, 2020, 383, 2628-2638.	27.0	580
3	Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genetics, 2002, 31, 135-140.	21.4	522
4	High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 2015, 25, 1030-1042.	5 . 5	458
5	A large-scale insertional mutagenesis screen in zebrafish. Genes and Development, 1999, 13, 2713-2724.	5. 9	440
6	Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18613-18618.	7.1	364
7	High-Resolution Genome-Wide Mapping of Transposon Integration in Mammals. Molecular and Cellular Biology, 2005, 25, 2085-2094.	2.3	298
8	Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. Journal of Clinical Investigation, 2015, 125, 870-880.	8.2	287
9	Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nature Genetics, 2004, 36, 411-416.	21.4	272
10	Loci associated with skin pigmentation identified in African populations. Science, 2017, 358, .	12.6	260
11	The Tip-Link Antigen, a Protein Associated with the Transduction Complex of Sensory Hair Cells, Is Protocadherin-15. Journal of Neuroscience, 2006, 26, 7022-7034.	3.6	258
12	A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nature Protocols, 2016, 11, 2357-2375.	12.0	185
13	De novo assembly of the goldfish (<i>Carassius auratus</i>) genome and the evolution of genes after whole-genome duplication. Science Advances, 2019, 5, eaav0547.	10.3	182
14	Large-Scale Molecular Characterization of Adeno-Associated Virus Vector Integration in Mouse Liver. Journal of Virology, 2005, 79, 3606-3614.	3.4	164
15	Weak Palindromic Consensus Sequences Are a Common Feature Found at the Integration Target Sites of Many Retroviruses. Journal of Virology, 2005, 79, 5211-5214.	3.4	145
16	Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. Journal of Cell Biology, 2004, 164, 677-688.	5 . 2	136
17	A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies. Frontiers in Neural Circuits, 2015, 9, 78.	2.8	133
18	Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs. Genetics, 2015, 200, 431-441.	2.9	128

#	Article	IF	CITATIONS
19	CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Research, 2015, 43, e157-e157.	14.5	126
20	Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12428-12433.	7.1	113
21	Functional Analyses of Glycyl-tRNA Synthetase Mutations Suggest a Key Role for tRNA-Charging Enzymes in Peripheral Axons. Journal of Neuroscience, 2006, 26, 10397-10406.	3.6	112
22	A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Research, 2013, 23, 727-735.	5.5	105
23	A Defined Zebrafish Line for High-Throughput Genetics and Genomics: NHGRI-1. Genetics, 2014, 198, 167-170.	2.9	99
24	The stat3/socs3a Pathway Is a Key Regulator of Hair Cell Regeneration in Zebrafish stat3/socs3a Pathway: Regulator of Hair Cell Regeneration. Journal of Neuroscience, 2012, 32, 10662-10673.	3.6	93
25	MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Research, 2014, 42, 4257-4269.	14.5	93
26	High-Throughput Selection of Retrovirus Producer Cell Lines Leads to Markedly Improved Efficiency of Germ Line-Transmissible Insertions in Zebra Fish. Journal of Virology, 2002, 76, 2192-2198.	3.4	85
27	The Forkhead Transcription Factor Foxl1 Remains Bound to Condensed Mitotic Chromosomes and Stably Remodels Chromatin Structure. Molecular and Cellular Biology, 2006, 26, 155-168.	2.3	80
28	Understanding and Editing the Zebrafish Genome. Advances in Genetics, 2015, 92, 1-52.	1.8	79
29	Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1263-1267.	7.1	70
30	Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line. PLoS Genetics, 2009, 5, e1000455.	3.5	67
31	Long-Term Correction of Sandhoff Disease Following Intravenous Delivery of rAAV9 to Mouse Neonates. Molecular Therapy, 2015, 23, 414-422.	8.2	64
32	Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. Npj Regenerative Medicine, 2016, 1 , .	5.2	61
33	CRISPRz: a database of zebrafish validated sgRNAs. Nucleic Acids Research, 2016, 44, D822-D826.	14.5	53
34	Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 435-452.	1.5	48
35	Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. DMM Disease Models and Mechanisms, 2015, 8, 565-576.	2.4	47
36	Discovery and Characterization of Novel Vascular and Hematopoietic Genes Downstream of Etsrp in Zebrafish. PLoS ONE, 2009, 4, e4994.	2.5	45

#	Article	IF	CITATIONS
37	Genotoxicity in Mice Following AAV Gene Delivery: A Safety Concern for Human Gene Therapy?. Molecular Therapy, 2016, 24, 198-201.	8.2	44
38	Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. Npj Regenerative Medicine, 2018, 3, 11.	5.2	42
39	Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for <i>in vivo</i> screening of candidate therapeutic compounds. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	38
40	The zebrafish gene claudinj is essential for normal ear function and important for the formation of the otoliths. Mechanisms of Development, 2005, 122, 949-958.	1.7	34
41	Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	31
42	Using retroviruses as a mutagenesis tool to explore the zebrafish genome. Briefings in Functional Genomics & Proteomics, 2008, 7, 427-443.	3.8	29
43	The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. Npj Regenerative Medicine, 2021, 6, 55.	5. 2	28
44	Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection. G3: Genes, Genomes, Genetics, 2017, 7, 719-722.	1.8	25
45	Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins. Nucleic Acids Research, 2008, 36, e8-e8.	14.5	24
46	Questions about NgAgo. Protein and Cell, 2016, 7, 913-915.	11.0	24
47	Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos. Genomics, 2008, 91, 165-177.	2.9	22
48	Retroviral-mediated Insertional Mutagenesis in Zebrafish. Methods in Cell Biology, 2011, 104, 59-82.	1.1	21
49	CaMK-II activation is essential for zebrafish inner ear development and acts through Delta–Notch signaling. Developmental Biology, 2013, 381, 179-188.	2.0	21
50	Darwinian genomics and diversity in the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	19
51	Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish. Scientific Reports, 2020, 10, 10127.	3.3	18
52	Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish. PLoS ONE, 2015, 10, e0131908.	2.5	14
53	Large-scale generation and phenotypic characterization of zebrafish CRISPR mutants of DNA repair genes. DNA Repair, 2021, 107, 103173.	2.8	13
54	A subset of SMN complex members have a specific role in tissue regeneration via ERBB pathway-mediated proliferation. Npj Regenerative Medicine, 2020, 5, 6.	5.2	11

#	Article	IF	CITATIONS
55	Building the vertebrate codex using the gene breaking protein trap library. ELife, 2020, 9, .	6.0	11
56	Use of pseudotyped retroviruses in zebrafish as genetic tags. Methods in Enzymology, 2000, 327, 145-161.	1.0	5
57	A matched set of frog sequences. Nature, 2016, 538, 320-321.	27.8	4
58	A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	4
59	Chondroitin/dermatan sulfate glycosyltransferase genes are essential for craniofacial development. PLoS Genetics, 2022, 18, e1010067.	3.5	2
60	Sequencing-based Expression Profiling in Zebrafish. Methods in Cell Biology, 2011, 104, 379-399.	1.1	1
61	The changing conditions of zebrafish mutants: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15082-15083.	7.1	1