
Gerald Larrouy-Maumus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/772772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GNATÂtoxins evolve toward narrow tRNA target specificities. Nucleic Acids Research, 2022, 50, 5807-5817.	14.5	2
2	Expression of a novel mycobacterial phosphodiesterase successfully lowers cAMP levels resulting in reduced tolerance to cell wall–targeting antimicrobials. Journal of Biological Chemistry, 2022, 298, 102151.	3.4	12
3	Lipids and glycolipids as biomarkers of mycobacterial infections. , 2022, , 83-104.		0
4	Performance of lipid fingerprint-based MALDI-ToF for the diagnosis of mycobacterial infections. Clinical Microbiology and Infection, 2021, 27, 912.e1-912.e5.	6.0	12
5	Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. Methods in Molecular Biology, 2021, 2306, 275-283.	0.9	2
6	Metabolomics in infectious diseases and drug discovery. Molecular Omics, 2021, 17, 376-393.	2.8	62
7	Metabolic fluxes for nutritional flexibility of <i>Mycobacterium tuberculosis</i> . Molecular Systems Biology, 2021, 17, e10280.	7.2	19
8	An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Frontiers in Chemistry, 2021, 9, 715890.	3.6	9
9	Detection of Colistin Resistance in Pseudomonas aeruginosa Using the MALDIxin Test on the Routine MALDI Biotyper Sirius Mass Spectrometer. Frontiers in Microbiology, 2021, 12, 725383.	3.5	12
10	Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. Journal of Biological Chemistry, 2021, 296, 100384.	3.4	10
11	Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology (United Kingdom), 2021, 167, .	1.8	15
12	Optimization of the MALDIxin test for the rapid identification of colistin resistance in Klebsiella pneumoniae using MALDI-TOF MS. Journal of Antimicrobial Chemotherapy, 2020, 75, 110-116.	3.0	33
13	Rapid glycosylâ€inositolâ€phosphoâ€ceramide fingerprint from filamentous fungal pathogens using the MALDI Biotyper Sirius system. Rapid Communications in Mass Spectrometry, 2020, 34, e8904.	1.5	4
14	Metabolomics reveals that the cAMP receptor protein regulates nitrogen and peptidoglycan synthesis in <i>Mycobacterium tuberculosis</i> . RSC Advances, 2020, 10, 26212-26219.	3.6	6
15	Early detection of metabolic changes in drug-induced steatosis using metabolomics approaches. RSC Advances, 2020, 10, 41047-41057.	3.6	3
16	Detection of Colistin Resistance in Salmonella enterica Using MALDIxin Test on the Routine MALDI Biotyper Sirius Mass Spectrometer. Frontiers in Microbiology, 2020, 11, 1141.	3.5	12
17	Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry. Scientific Reports, 2020, 10, 5160.	3.3	14
18	TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nature Communications, 2020, 11, 684.	12.8	68

#	Article	IF	CITATIONS
19	The clue is in the lipid A: Rapid detection of colistin resistance. PLoS Pathogens, 2020, 16, e1008331.	4.7	13
20	Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 621452.	3.9	19
21	Modulation of cAMP levels by a conserved actinobacteria phosphodiesterase enzyme reduces antimicrobial tolerance in mycobacteria. Access Microbiology, 2020, 2, .	0.5	1
22	The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. ELife, 2020, 9, .	6.0	66
23	Understanding the evolution of Mycobacterium tuberculosis lineages using an integrated genomics and metabolomics approach. Access Microbiology, 2020, 2, .	0.5	0
24	A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular <i>Shigella</i> . Cytoskeleton, 2019, 76, 163-172.	2.0	17
25	MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS ONE, 2019, 14, e0218951.	2.5	30
26	ISAba1-dependent overexpression of eptA in clinical strains of Acinetobacter baumannii resistant to colistin. Journal of Antimicrobial Chemotherapy, 2019, 74, 2544-2550.	3.0	19
27	NaCl triggers the CRP-dependent increase of cAMP in Mycobacterium tuberculosis. Tuberculosis, 2019, 116, 8-16.	1.9	11
28	Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System. Journal of Clinical Microbiology, 2019, 57, .	3.9	38
29	Lipids as Biomarkers of Cancer and Bacterial Infections. Current Medicinal Chemistry, 2019, 26, 1924-1932.	2.4	11
30	Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Scientific Reports, 2018, 8, 16910.	3.3	61
31	Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Scientific Reports, 2018, 8, 16840.	3.3	34
32	Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host and Microbe, 2018, 24, 866-874.e4.	11.0	62
33	Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test. Journal of Antimicrobial Chemotherapy, 2018, 73, 3359-3367.	3.0	66
34	Activity of acetyltransferase toxins involved in SalmonellaÂpersister formation during macrophage infection. Nature Communications, 2018, 9, 1993.	12.8	84
35	Intact Cell Lipidomics Reveal Changes to the Ratio of Cardiolipins to Phosphatidylinositols in Response to Kanamycin in HeLa and Primary Cells. Chemical Research in Toxicology, 2018, 31, 688-696.	3.3	2
36	Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine, 2017, 35, 1395-1402.	3.8	51

#	Article	IF	CITATIONS
37	Hybrid Mass Spectrometry Approaches to Determine How L-Histidine Feedback Regulates the Enzyzme MtATP-Phosphoribosyltransferase. Structure, 2017, 25, 730-738.e4.	3.3	22
38	Nitazoxanide Analogs Require Nitroreduction for Antimicrobial Activity in <i>Mycobacterium smegmatis</i> . Journal of Medicinal Chemistry, 2017, 60, 7425-7433.	6.4	6
39	Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie, 2017, 141, 16-20.	2.6	12
40	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043.	4.5	91
41	Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 352-360.	3.8	52
42	Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. Journal of Microbiological Methods, 2016, 120, 68-71.	1.6	46
43	The presence of a galactosamine substituent on the arabinogalactan of Mycobacterium tuberculosis abrogates full maturation of human peripheral blood monocyte-derived dendritic cells and increases secretion of IL-10. Tuberculosis, 2015, 95, 476-489.	1.9	12
44	Cholesterol acquisition by <i>Mycobacterium tuberculosis</i> . Virulence, 2015, 6, 412-413.	4.4	9
45	A glycomic approach reveals a new mycobacterial polysaccharide. Clycobiology, 2015, 25, 1163-1171.	2.5	7
46	Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis, 2015, 95, 75-85.	1.9	27
47	Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection. PLoS Pathogens, 2014, 10, e1003928.	4.7	148
48	Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Reports, 2014, 15, 657-669.	4.5	104
49	Chemical Mechanism of Glycerol 3-Phosphate Phosphatase: pH-Dependent Changes in the Rate-Limiting Step. Biochemistry, 2014, 53, 143-151.	2.5	3
50	Biosynthesis and Translocation of Unsulfated Acyltrehaloses in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 27952-27965.	3.4	62
51	Functional assignment of Mycobacterium tuberculosis proteome revealed byÂgenome-scale fold-recognition. Tuberculosis, 2013, 93, 40-46.	1.9	18
52	Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nature Chemical Biology, 2013, 9, 674-676.	8.0	95
53	Discovery of a glycerol 3-phosphate phosphatase reveals glycerophospholipid polar head recycling in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11320-11325.	7.1	56
54	Mechanism of Feedback Allosteric Inhibition of ATP Phosphoribosyltransferase. Biochemistry, 2012, 51, 8027-8038.	2.5	28

#	Article	IF	CITATIONS
55	A Small Multidrug Resistance-like Transporter Involved in the Arabinosylation of Arabinogalactan and Lipoarabinomannan in Mycobacteria. Journal of Biological Chemistry, 2012, 287, 39933-39941.	3.4	27
56	Biogenesis of mycobacterial cell envelope glycoconjugates. FASEB Journal, 2012, 26, 358.3.	0.5	0
57	Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities. PLoS ONE, 2011, 6, e26316.	2.5	20
58	Deciphering sulfoglycolipids of Mycobacterium tuberculosis. Journal of Lipid Research, 2011, 52, 1098-1110.	4.2	49
59	Lipoglycans Contribute to Innate Immune Detection of Mycobacteria. PLoS ONE, 2011, 6, e28476.	2.5	13
60	High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling. PLoS Pathogens, 2010, 6, e1001100.	4.7	158
61	Biosynthetic Origin of the Galactosamine Substituent of Arabinogalactan in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2010, 285, 41348-41355.	3.4	38
62	Mycobacterium marinum MMAR_2380, a predicted transmembrane acyltransferase, is essential for the presence of the mannose cap on lipoarabinomannan. Microbiology (United Kingdom), 2010, 156, 3492-3502.	1.8	13
63	AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology, 2009, 19, 1235-1247.	2.5	61
64	Initiation of Methylglucose Lipopolysaccharide Biosynthesis in Mycobacteria. PLoS ONE, 2009, 4, e5447.	2.5	28
65	The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cellular Microbiology, 2008, 10, 930-944.	2.1	124
66	The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis, 2008, 88, 560-565.	1.9	86
67	Emergent expression of fitness-conferring genes by phenotypic selection. , 0, , .		5