Filippo Fabbri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727681/publications.pdf

Version: 2024-02-01

105	3,714	27	59
papers	citations	h-index	g-index
109	109	109	7146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC. Carbon, 2022, 189, 210-218.	10.3	3
2	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	5.6	3
3	Ultrafast hot carrier transfer in WS2/graphene large area heterostructures. Npj 2D Materials and Applications, 2022, 6, .	7.9	17
4	Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. ACS Nano, 2022, 16, 5920-5931.	14.6	16
5	Unexpected Electron Transport Suppression in a Heterostructured Graphene–MoS ₂ Multiple Field-Effect Transistor Architecture. ACS Nano, 2022, 16, 1291-1300.	14.6	9
6	Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D Materials, 2022, 9, 035018.	4.4	5
7	Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector. Nanotechnology, 2021, 32, 155504.	2.6	9
8	Thermal stability of monolayer WS ₂ in BEOL conditions. JPhys Materials, 2021, 4, 024002.	4.2	7
9	Evaluating the plasmon-exciton interaction in ZnO tetrapods coupled with gold nanostructures by nanoscale cathodoluminescence. Nano Express, 2021, 2, 014004.	2.4	1
10	Synthesis of Large-Scale Monolayer 1T′-MoTe ₂ and Its Stabilization <i>via</i> Scalable hBN Encapsulation. ACS Nano, 2021, 15, 4213-4225.	14.6	61
11	Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano, 2021, 15, 3171-3187.	14.6	75
12	Ultrafast Charge Separation in Bilayer WS2/Graphene Heterostructure Revealed by Time- and Angle-Resolved Photoemission Spectroscopy. Frontiers in Physics, 2021, 9, .	2.1	9
13	Gold nanoparticle assisted synthesis of MoS ₂ monolayers by chemical vapor deposition. Nanoscale Advances, 2021, 3, 4826-4833.	4.6	15
14	Covalent organic functionalization of graphene nanosheets and reduced graphene oxide <i>via</i> 1,3-dipolar cycloaddition of azomethine ylide. Nanoscale Advances, 2021, 3, 5841-5852.	4.6	11
15	Deterministic synthesis of Cu9S5 flakes assisted by single-layer graphene arrays. Nanoscale Advances, 2021, 3, 1352-1361.	4.6	1
16	Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures. Physical Review Letters, 2021, 127, 276401.	7.8	13
17	Driving with temperature the synthesis of graphene on Ge(110). Applied Surface Science, 2020, 499, 143923 .	6.1	22
18	Deterministic direct growth of WS ₂ on CVD graphene arrays. 2D Materials, 2020, 7, 014002.	4.4	17

#	Article	IF	Citations
19	Direct Probing of Grain Boundary Resistance in Chemical Vapor Depositionâ€Grown Monolayer MoS 2 by Conductive Atomic Force Microscopy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900393.	2.4	26
20	Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials. Nano Letters, 2020, 20, 567-576.	9.1	22
21	Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nature Communications, 2020, 11, 3566.	12.8	120
22	Effect of Chemical Vapor Deposition WS2 on Viability and Differentiation of SH-SY5Y Cells. Frontiers in Neuroscience, 2020, 14, 592502.	2.8	12
23	Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano, 2020, 14, 11190-11204.	14.6	48
24	Assembly of Pt Nanoparticles on Graphitized Carbon Nanofibers as Hierarchically Structured Electrodes. ACS Applied Nano Materials, 2020, 3, 9880-9888.	5.0	10
25	High-temperature nitrogen annealing induced bonding states and photoluminescence changes in inductively coupled plasma torch synthesized silicon nanostructures. Journal of Applied Physics, 2020, 128, .	2.5	3
26	Scanning Probe Spectroscopy of WS2/Graphene Van Der Waals Heterostructures. Nanomaterials, 2020, 10, 2494.	4.1	4
27	Direct evidence for efficient ultrafast charge separation in epitaxial WS ₂ /graphene heterostructures. Science Advances, 2020, 6, eaay0761.	10.3	64
28	Transforming colloidal Cs ₄ PbBr ₆ nanocrystals with poly(maleic) Tj ETQq0 0 0 rgBT /C intermediate heterostructures. Chemical Science, 2020, 11, 3986-3995.	verlock 10 7.4	Tf 50 387 Td 59
29	Graphene Promotes Axon Elongation through Local Stall of Nerve Growth Factor Signaling Endosomes. Nano Letters, 2020, 20, 3633-3641.	9.1	44
30	Optical dielectric function of two-dimensional WS2 on epitaxial graphene. 2D Materials, 2020, 7, 025024.	4.4	10
31	Edge Defects Promoted Oxidation of Monolayer WS ₂ Synthesized on Epitaxial Graphene. Journal of Physical Chemistry C, 2020, 124, 9035-9044.	3.1	22
32	Influence of organic promoter gradient on the MoS ₂ growth dynamics. Nanoscale Advances, 2020, 2, 2352-2362.	4.6	20
0.0			
33	Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene. Small, 2019, 15, e1904906.	10.0	61
34		3.3	9
	e1904906. Local tuning of WS2 photoluminescence using polymeric micro-actuators in a monolithic van der		

#	Article	IF	CITATIONS
37	Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature. Nanoscale, 2019, 11, 6145-6152.	5.6	14
38	Lineageâ€Specific Commitment of Stem Cells with Organic and Graphene Oxide–Functionalized Nanofibers. Advanced Functional Materials, 2019, 29, 1806694.	14.9	12
39	Abrupt changes in the graphene on Ge(001) system at the onset of surface melting. Carbon, 2019, 145, 345-351.	10.3	12
40	Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale, 2018, 10, 4332-4338.	5.6	28
41	A sensitive calorimetric technique to study energy (heat) exchange at the nano-scale. Nanoscale, 2018, 10, 10079-10086.	5.6	5
42	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	5.6	16
43	Raman, FT-IR spectroscopy and morphology of carbon dust from carbon arc in liquid benzene. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 654-660.	2.1	3
44	Probing the nanoscale light emission properties of a CVD-grown MoS ₂ monolayer by tip-enhanced photoluminescence. Nanoscale, 2018, 10, 14055-14059.	5.6	36
45	Thrombin Assessment on Nanostructured Label-Free Aptamer-Based Sensors: A Mapping Investigation via Surface-Enhanced Raman Spectroscopy. BioMed Research International, 2018, 2018, 1-7.	1.9	2
46	Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Research, 2018, 11, 5879-5889.	10.4	21
47	$\hat{l}\mu\text{-Ga}2O3$ epilayers as a material for solar-blind UV photodetectors. Materials Chemistry and Physics, 2018, 205, 502-507.	4.0	87
48	Growth and characterization of \hat{l}^2 -Ga2O3 nanowires obtained on not-catalyzed and Au/Pt catalyzed substrates. Journal of Crystal Growth, 2017, 457, 255-261.	1.5	12
49	Functionalization of SiC/SiO _{<i>x</i>} nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation. Molecular Systems Design and Engineering, 2017, 2, 165-172.	3.4	11
50	Morphological and structural properties of neutron-irradiated B ₁₂ C ₃ boron carbide microcrystals. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 585-588.	2.1	7
51	Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications. Scientific Reports, 2017, 7, 17325.	3.3	18
52	Silicon Carbide-Based Nanowires for Biomedical Applications. , 2016, , 311-342.		3
53	MOS2Impurities: Evidence of Native Cs Impurities and Metal-Insulator Transition in MoS2Natural Crystals (Adv. Electron. Mater. 6/2016). Advanced Electronic Materials, 2016, 2, .	5.1	0
54	Structural, optical and compositional stability of MoS ₂ multi-layer flakes under high dose electron beam irradiation. 2D Materials, 2016, 3, 025024.	4.4	19

#	Article	IF	Citations
55	Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO _{<i>x</i>} . ACS Catalysis, 2016, 6, 3619-3628.	11,2	68
56	Cold field electron emission of large-area arrays of SiC nanowires: photo-enhancement and saturation effects. Journal of Materials Chemistry C, 2016, 4, 8226-8234.	5.5	18
57	Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nature Communications, 2016, 7, 13044.	12.8	60
58	S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Scientific Reports, 2016, 6, 27948.	3.3	16
59	Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles. Scientific Reports, 2016, 6, 19168.	3.3	27
60	Evidence of Native Cs Impurities and Metal–Insulator Transition in MoS ₂ Natural Crystals. Advanced Electronic Materials, 2016, 2, 1600091.	5.1	12
61	Synthesis and enhanced effect of vanadium on structural and optical properties of zinc oxide. Optical and Quantum Electronics, 2016, 48, 1.	3.3	4
62	Low Growth Temperature MOCVD InGaP for Multi-junction Solar Cells. Energy Procedia, 2015, 84, 34-40.	1.8	0
63	Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Scientific Reports, 2015, 5, 7606.	3.3	64
64	The critical role of intragap states in the energy transfer from gold nanoparticles to TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 4864-4869.	2.8	41
65	Origin of the visible emission of black silicon microstructures. Applied Physics Letters, 2015, 107, .	3.3	7
66	Multicolor Depth-Resolved Cathodoluminescence from Eu-Doped SiOC Thin Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18201-18205.	8.0	8
67	Tuning the radial structure of core–shell silicon carbide nanowires. CrystEngComm, 2015, 17, 1258-1263.	2.6	27
68	PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Frontiers in Neuroscience, 2015, 9, 521.	2.8	45
69	Cubic Silicon Carbide Nanowires. Carbon Materials, 2015, , 101-129.	1.2	1
70	3C–SiC nanowires luminescence enhancement by coating with a conformal oxides layer. Journal Physics D: Applied Physics, 2014, 47, 394006.	2.8	12
71	Optical and structural properties of $Zn1\hat{a}^{\circ}$ 'x Mg x O ceramic materials. Applied Physics A: Materials Science and Processing, 2014, 116, 1501-1509.	2.3	29
72	Carbon-doped SiO _{<i></i>} nanowires with a large yield of white emission. Nanotechnology, 2014, 25, 185704.	2.6	16

#	Article	IF	Citations
73	Photoelectrochemical properties of ZnO nanorods decorated with Cu and Cu2O nanoparticles. Superlattices and Microstructures, 2014, 72, 253-261.	3.1	7
74	Visible and Infra-red Light Emission in Boron-Doped Wurtzite Silicon Nanowires. Scientific Reports, 2014, 4, 3603.	3.3	46
75	Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Scientific Reports, 2014, 4, 5158.	3.3	144
76	Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale, 2013, 5, 1060-1066.	5.6	28
77	Cathodoluminescence of Self-assembled Nanosystems. , 2013, , 557-601.		2
78	Structural and luminescence properties of HfO2 nanocrystals grown by atomic layer deposition on SiC/SiO2 core/shell nanowires. Scripta Materialia, 2013, 69, 744-747.	5.2	7
79	Thermal Processing and Characterizations of Dye-Sensitized Solar Cells Based on Nanostructured TiO2. Journal of Physical Chemistry C, 2013, 117, 3729-3738.	3.1	5
80	lon irradiation induced formation of CdO microcrystals on CdTe surfaces. Materials Letters, 2013, 92, 397-400.	2.6	7
81	Preparing the Way for Doping Wurtzite Silicon Nanowires while Retaining the Phase. Nano Letters, 2013, 13, 5900-5906.	9.1	32
82	Depth-resolved cathodoluminescence spectroscopy of silicon supersaturated with sulfur. Applied Physics Letters, 2013, 102, .	3.3	14
83	Selective Î ² -SiC/SiO ₂ Core-Shell NW Growth on Patterned Silicon Substrate. Materials Science Forum, 2012, 711, 75-79.	0.3	1
84	Emission Enhancement of SiC/SiO ₂ Core/Shell Nanowires Induced by the Oxide Shell. Materials Science Forum, 2012, 717-720, 557-560.	0.3	1
85	Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires. Nanoscale Research Letters, 2012, 7, 680.	5.7	19
86	ZnS and ZnO Nanosheets from ZnS(en) _{0.5} Precursor: Nanoscale Structure and Photocatalytic Properties. Journal of Physical Chemistry C, 2012, 116, 6960-6965.	3.1	63
87	Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7600-7603.	13.7	1,464
88	4H-SiC band structure investigated by surface photovoltage spectroscopy. Acta Materialia, 2012, 60, 3350-3354.	7.9	5
89	Luminescence properties of SiC/SiO2 core–shell nanowires with different radial structure. Materials Letters, 2012, 71, 137-140.	2.6	34
90	Functionalized ZnO nanostructures for gas sensing and photovoltaic applications. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C536-C537.	0.3	0

#	Article	IF	CITATIONS
91	Effects of Chemical Treatment on the Luminescence of ZnO. Journal of Electronic Materials, 2010, 39, 761-765.	2.2	4
92	Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO ₂ core/shell self-organized nanowires. Nanotechnology, 2010, 21, 345702.	2.6	37
93	Effects of single-layer Shockley stacking faults on the transport properties of high-purity semi-insulating 4H–SiC. Journal of Applied Physics, 2010, 108, .	2.5	1
94	Optical and structural properties of SiO 2 co-doped with Si-nc and Er3+ions. , 2010, , .		1
95	Investigation of emitting centers in SiO2 codoped with silicon nanoclusters and Er3+ ions by cathodoluminescence technique. Journal of Applied Physics, 2010, 108, 113504.	2.5	21
96	Unpredicted Nucleation of Extended Zinc Blende Phases in Wurtzite ZnO Nanotetrapod Arms. ACS Nano, 2009, 3, 3158-3164.	14.6	49
97	C-V and DLTS Analyses of Trap-Induced Graded Junctions: The Case of Al ⁺ Implanted JTE p ⁺ n 4H-SiC Diodes. Materials Science Forum, 2009, 615-617, 469-472.	0.3	0
98	A new growth method for the synthesis of 3C–SiC nanowires. Materials Letters, 2009, 63, 2581-2583.	2.6	22
99	Electrical activities of stacking faults and partial dislocations in 4H-SiC homoepitaxial films. Superlattices and Microstructures, 2009, 45, 295-300.	3.1	8
100	Comparison between cathodoluminescence spectroscopy and capacitance transient spectroscopy on Al+ ion implanted 4H-SiC p+/n diodes. Superlattices and Microstructures, 2009, 45, 383-387.	3.1	12
101	Cathodoluminescence characterization of \hat{l}^2 -SiC nanowires and surface-related silicon dioxide. Materials Science in Semiconductor Processing, 2008, 11, 179-181.	4.0	13
102	Electron-beam-induced current study of stacking faults and partial dislocations in 4H-SiC Schottky diode. Applied Physics Letters, 2008, 93, .	3.3	39
103	Cubic SiC Nanowires: Growth, Characterization and Applications. , 0, , .		5
104	TEM and SEM-CL Studies of SiC Nanowires. Materials Science Forum, 0, 645-648, 387-390.	0.3	1
105	Effects of Growth Parameters on SiC/SiO ₂ Core/Shell Nanowires Radial Structures. Materials Science Forum, 0, 740-742, 494-497.	0.3	10