List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727681/publications.pdf Version: 2024-02-01

FILIDDO FARROL

#	Article	IF	CITATIONS
1	Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7600-7603.	13.7	1,464
2	Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Scientific Reports, 2014, 4, 5158.	3.3	144
3	Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nature Communications, 2020, 11, 3566.	12.8	120
4	ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors. Materials Chemistry and Physics, 2018, 205, 502-507.	4.0	87
5	Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano, 2021, 15, 3171-3187.	14.6	75
6	Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO _{<i>x</i>} . ACS Catalysis, 2016, 6, 3619-3628.	11.2	68
7	Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Scientific Reports, 2015, 5, 7606.	3.3	64
8	Direct evidence for efficient ultrafast charge separation in epitaxial WS ₂ /graphene heterostructures. Science Advances, 2020, 6, eaay0761.	10.3	64
9	ZnS and ZnO Nanosheets from ZnS(en) _{0.5} Precursor: Nanoscale Structure and Photocatalytic Properties. Journal of Physical Chemistry C, 2012, 116, 6960-6965.	3.1	63
10	Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene. Small, 2019, 15, e1904906.	10.0	61
11	Synthesis of Large-Scale Monolayer 1T′-MoTe ₂ and Its Stabilization <i>via</i> Scalable hBN Encapsulation. ACS Nano, 2021, 15, 4213-4225.	14.6	61
12	Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nature Communications, 2016, 7, 13044.	12.8	60
13	Transforming colloidal Cs ₄ PbBr ₆ nanocrystals with poly(maleic) Tj ETQq1 1 0.784314 intermediate heterostructures. Chemical Science, 2020, 11, 3986-3995.	rgBT /Ove 7.4	erlock 10 Tf 5 59
14	Unpredicted Nucleation of Extended Zinc Blende Phases in Wurtzite ZnO Nanotetrapod Arms. ACS Nano, 2009, 3, 3158-3164.	14.6	49
15	Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano, 2020, 14, 11190-11204.	14.6	48
16	Visible and Infra-red Light Emission in Boron-Doped Wurtzite Silicon Nanowires. Scientific Reports, 2014, 4, 3603.	3.3	46
17	PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Frontiers in Neuroscience, 2015, 9, 521.	2.8	45
18	Graphene Promotes Axon Elongation through Local Stall of Nerve Growth Factor Signaling Endosomes. Nano Letters, 2020, 20, 3633-3641.	9.1	44

#	Article	IF	CITATIONS
19	The critical role of intragap states in the energy transfer from gold nanoparticles to TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 4864-4869.	2.8	41
20	Electron-beam-induced current study of stacking faults and partial dislocations in 4H-SiC Schottky diode. Applied Physics Letters, 2008, 93, .	3.3	39
21	Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO ₂ core/shell self-organized nanowires. Nanotechnology, 2010, 21, 345702.	2.6	37
22	Probing the nanoscale light emission properties of a CVD-grown MoS ₂ monolayer by tip-enhanced photoluminescence. Nanoscale, 2018, 10, 14055-14059.	5.6	36
23	Luminescence properties of SiC/SiO2 core–shell nanowires with different radial structure. Materials Letters, 2012, 71, 137-140.	2.6	34
24	Preparing the Way for Doping Wurtzite Silicon Nanowires while Retaining the Phase. Nano Letters, 2013, 13, 5900-5906.	9.1	32
25	Optical and structural properties of Zn1â^'x Mg x O ceramic materials. Applied Physics A: Materials Science and Processing, 2014, 116, 1501-1509.	2.3	29
26	Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale, 2013, 5, 1060-1066.	5.6	28
27	Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale, 2018, 10, 4332-4338.	5.6	28
28	Tuning the radial structure of core–shell silicon carbide nanowires. CrystEngComm, 2015, 17, 1258-1263.	2.6	27
29	Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles. Scientific Reports, 2016, 6, 19168.	3.3	27
30	Direct Probing of Grain Boundary Resistance in Chemical Vapor Depositionâ€Grown Monolayer MoS 2 by Conductive Atomic Force Microscopy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900393.	2.4	26
31	A new growth method for the synthesis of 3C–SiC nanowires. Materials Letters, 2009, 63, 2581-2583.	2.6	22
32	Driving with temperature the synthesis of graphene on Ge(110). Applied Surface Science, 2020, 499, 143923.	6.1	22
33	Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials. Nano Letters, 2020, 20, 567-576.	9.1	22
34	Edge Defects Promoted Oxidation of Monolayer WS ₂ Synthesized on Epitaxial Graphene. Journal of Physical Chemistry C, 2020, 124, 9035-9044.	3.1	22
35	Investigation of emitting centers in SiO2 codoped with silicon nanoclusters and Er3+ ions by cathodoluminescence technique. Journal of Applied Physics, 2010, 108, 113504.	2.5	21
36	Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Research, 2018, 11, 5879-5889.	10.4	21

#	Article	IF	CITATIONS
37	Influence of organic promoter gradient on the MoS ₂ growth dynamics. Nanoscale Advances, 2020, 2, 2352-2362.	4.6	20
38	Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires. Nanoscale Research Letters, 2012, 7, 680.	5.7	19
39	Structural, optical and compositional stability of MoS ₂ multi-layer flakes under high dose electron beam irradiation. 2D Materials, 2016, 3, 025024.	4.4	19
40	Cold field electron emission of large-area arrays of SiC nanowires: photo-enhancement and saturation effects. Journal of Materials Chemistry C, 2016, 4, 8226-8234.	5.5	18
41	Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications. Scientific Reports, 2017, 7, 17325.	3.3	18
42	Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study. ACS Omega, 2019, 4, 2256-2260.	3.5	18
43	Deterministic direct growth of WS ₂ on CVD graphene arrays. 2D Materials, 2020, 7, 014002.	4.4	17
44	Ultrafast hot carrier transfer in WS2/graphene large area heterostructures. Npj 2D Materials and Applications, 2022, 6, .	7.9	17
45	Carbon-doped SiO _{<i>x</i>} nanowires with a large yield of white emission. Nanotechnology, 2014, 25, 185704.	2.6	16
46	S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Scientific Reports, 2016, 6, 27948.	3.3	16
47	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	5.6	16
48	Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. ACS Nano, 2022, 16, 5920-5931.	14.6	16
49	Gold nanoparticle assisted synthesis of MoS ₂ monolayers by chemical vapor deposition. Nanoscale Advances, 2021, 3, 4826-4833.	4.6	15
50	Depth-resolved cathodoluminescence spectroscopy of silicon supersaturated with sulfur. Applied Physics Letters, 2013, 102, .	3.3	14
51	Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature. Nanoscale, 2019, 11, 6145-6152.	5.6	14
52	Cathodoluminescence characterization of β-SiC nanowires and surface-related silicon dioxide. Materials Science in Semiconductor Processing, 2008, 11, 179-181.	4.0	13
53	Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures. Physical Review Letters, 2021, 127, 276401.	7.8	13
54	Comparison between cathodoluminescence spectroscopy and capacitance transient spectroscopy on Al+ ion implanted 4H-SiC p+/n diodes. Superlattices and Microstructures, 2009, 45, 383-387.	3.1	12

#	Article	IF	CITATIONS
55	3C–SiC nanowires luminescence enhancement by coating with a conformal oxides layer. Journal Physics D: Applied Physics, 2014, 47, 394006.	2.8	12
56	Evidence of Native Cs Impurities and Metal–Insulator Transition in MoS ₂ Natural Crystals. Advanced Electronic Materials, 2016, 2, 1600091.	5.1	12
57	Growth and characterization of β-Ga2O3 nanowires obtained on not-catalyzed and Au/Pt catalyzed substrates. Journal of Crystal Growth, 2017, 457, 255-261.	1.5	12
58	Lineage‧pecific Commitment of Stem Cells with Organic and Graphene Oxide–Functionalized Nanofibers. Advanced Functional Materials, 2019, 29, 1806694.	14.9	12
59	Abrupt changes in the graphene on Ge(001) system at the onset of surface melting. Carbon, 2019, 145, 345-351.	10.3	12
60	Effect of Chemical Vapor Deposition WS2 on Viability and Differentiation of SH-SY5Y Cells. Frontiers in Neuroscience, 2020, 14, 592502.	2.8	12
61	Functionalization of SiC/SiO _{<i>x</i>} nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation. Molecular Systems Design and Engineering, 2017, 2, 165-172.	3.4	11
62	Covalent organic functionalization of graphene nanosheets and reduced graphene oxide <i>via</i> 1,3-dipolar cycloaddition of azomethine ylide. Nanoscale Advances, 2021, 3, 5841-5852.	4.6	11
63	Effects of Growth Parameters on SiC/SiO ₂ Core/Shell Nanowires Radial Structures. Materials Science Forum, 0, 740-742, 494-497.	0.3	10
64	Assembly of Pt Nanoparticles on Graphitized Carbon Nanofibers as Hierarchically Structured Electrodes. ACS Applied Nano Materials, 2020, 3, 9880-9888.	5.0	10
65	Optical dielectric function of two-dimensional WS2 on epitaxial graphene. 2D Materials, 2020, 7, 025024.	4.4	10
66	Local tuning of WS2 photoluminescence using polymeric micro-actuators in a monolithic van der Waals heterostructure. Applied Physics Letters, 2019, 115, .	3.3	9
67	Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector. Nanotechnology, 2021, 32, 155504.	2.6	9
68	Ultrafast Charge Separation in Bilayer WS2/Graphene Heterostructure Revealed by Time- and Angle-Resolved Photoemission Spectroscopy. Frontiers in Physics, 2021, 9, .	2.1	9
69	Unexpected Electron Transport Suppression in a Heterostructured Graphene–MoS ₂ Multiple Field-Effect Transistor Architecture. ACS Nano, 2022, 16, 1291-1300.	14.6	9
70	Electrical activities of stacking faults and partial dislocations in 4H-SiC homoepitaxial films. Superlattices and Microstructures, 2009, 45, 295-300.	3.1	8
71	Multicolor Depth-Resolved Cathodoluminescence from Eu-Doped SiOC Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 18201-18205.	8.0	8
72	Structural and luminescence properties of HfO2 nanocrystals grown by atomic layer deposition on SiC/SiO2 core/shell nanowires. Scripta Materialia, 2013, 69, 744-747.	5.2	7

#	Article	IF	CITATIONS
73	lon irradiation induced formation of CdO microcrystals on CdTe surfaces. Materials Letters, 2013, 92, 397-400.	2.6	7
74	Photoelectrochemical properties of ZnO nanorods decorated with Cu and Cu2O nanoparticles. Superlattices and Microstructures, 2014, 72, 253-261.	3.1	7
75	Origin of the visible emission of black silicon microstructures. Applied Physics Letters, 2015, 107, .	3.3	7
76	Morphological and structural properties of neutron-irradiated B ₁₂ C ₃ boron carbide microcrystals. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 585-588.	2.1	7
77	Thermal stability of monolayer WS ₂ in BEOL conditions. JPhys Materials, 2021, 4, 024002.	4.2	7
78	Cubic SiC Nanowires: Growth, Characterization and Applications. , 0, , .		5
79	4H-SiC band structure investigated by surface photovoltage spectroscopy. Acta Materialia, 2012, 60, 3350-3354.	7.9	5
80	Thermal Processing and Characterizations of Dye-Sensitized Solar Cells Based on Nanostructured TiO2. Journal of Physical Chemistry C, 2013, 117, 3729-3738.	3.1	5
81	A sensitive calorimetric technique to study energy (heat) exchange at the nano-scale. Nanoscale, 2018, 10, 10079-10086.	5.6	5
82	Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D Materials, 2022, 9, 035018.	4.4	5
83	Effects of Chemical Treatment on the Luminescence of ZnO. Journal of Electronic Materials, 2010, 39, 761-765.	2.2	4
84	Synthesis and enhanced effect of vanadium on structural and optical properties of zinc oxide. Optical and Quantum Electronics, 2016, 48, 1.	3.3	4
85	Scanning Probe Spectroscopy of WS2/Graphene Van Der Waals Heterostructures. Nanomaterials, 2020, 10, 2494.	4.1	4
86	Silicon Carbide-Based Nanowires for Biomedical Applications. , 2016, , 311-342.		3
87	Raman, FT-IR spectroscopy and morphology of carbon dust from carbon arc in liquid benzene. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 654-660.	2.1	3
88	Titanium Dioxide Nanowires Grown on Titanium Disks Create a Nanostructured Surface with Improved <i>In Vitro</i> Osteogenic Potential. Journal of Nanoscience and Nanotechnology, 2019, 19, 4665-4670.	0.9	3
89	High-temperature nitrogen annealing induced bonding states and photoluminescence changes in inductively coupled plasma torch synthesized silicon nanostructures. Journal of Applied Physics, 2020, 128, .	2.5	3
90	3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC. Carbon, 2022, 189, 210-218.	10.3	3

#	Article	IF	CITATIONS
91	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	5.6	3
92	Cathodoluminescence of Self-assembled Nanosystems. , 2013, , 557-601.		2
93	Thrombin Assessment on Nanostructured Label-Free Aptamer-Based Sensors: A Mapping Investigation via Surface-Enhanced Raman Spectroscopy. BioMed Research International, 2018, 2018, 1-7.	1.9	2
94	TEM and SEM-CL Studies of SiC Nanowires. Materials Science Forum, 0, 645-648, 387-390.	0.3	1
95	Effects of single-layer Shockley stacking faults on the transport properties of high-purity semi-insulating 4H–SiC. Journal of Applied Physics, 2010, 108, .	2.5	1
96	Optical and structural properties of SiO 2 co-doped with Si-nc and Er3+ions. , 2010, , .		1
97	Selective β-SiC/SiO ₂ Core-Shell NW Growth on Patterned Silicon Substrate. Materials Science Forum, 2012, 711, 75-79.	0.3	1
98	Emission Enhancement of SiC/SiO ₂ Core/Shell Nanowires Induced by the Oxide Shell. Materials Science Forum, 2012, 717-720, 557-560.	0.3	1
99	Evaluating the plasmon-exciton interaction in ZnO tetrapods coupled with gold nanostructures by nanoscale cathodoluminescence. Nano Express, 2021, 2, 014004.	2.4	1
100	Deterministic synthesis of Cu9S5 flakes assisted by single-layer graphene arrays. Nanoscale Advances, 2021, 3, 1352-1361.	4.6	1
101	Cubic Silicon Carbide Nanowires. Carbon Materials, 2015, , 101-129.	1.2	1
102	C-V and DLTS Analyses of Trap-Induced Graded Junctions: The Case of Al ⁺ Implanted JTE p ⁺ n 4H-SiC Diodes. Materials Science Forum, 2009, 615-617, 469-472.	0.3	0
103	Low Growth Temperature MOCVD InGaP for Multi-junction Solar Cells. Energy Procedia, 2015, 84, 34-40.	1.8	0
104	MOS2Impurities: Evidence of Native Cs Impurities and Metal-Insulator Transition in MoS2Natural Crystals (Adv. Electron. Mater. 6/2016). Advanced Electronic Materials, 2016, 2, .	5.1	0
105	Functionalized ZnO nanostructures for gas sensing and photovoltaic applications. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C536-C537.	0.3	Ο