
Matthew T Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A genomic and morphometric analysis of alpineÂbumblebees: Ongoing reductions in tongue length but no clearÂgenetic component. Molecular Ecology, 2022, 31, 1111-1127.	3.9	8
2	Massive genome inversion drives coexistence of divergent morphs in common quails. Current Biology, 2022, 32, 462-469.e6.	3.9	25
3	Genetic Barriers to Historical Gene Flow between Cryptic Species of Alpine Bumblebees Revealed by Comparative Population Genomics. Molecular Biology and Evolution, 2021, 38, 3126-3143.	8.9	25
4	Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 2021, 161, 107167.	2.7	1
5	Population Genomics: How Do Cape Honey Bees Do Without Sex?. Current Biology, 2020, 30, R820-R821.	3.9	Ο
6	Female-biased gene flow between two species of Darwin's finches. Nature Ecology and Evolution, 2020, 4, 979-986.	7.8	21
7	Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics, 2019, 212, 1101-1119.	2.9	17
8	Apis mellifera. Trends in Genetics, 2019, 35, 880-881.	6.7	2
9	Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee. Molecular Biology and Evolution, 2019, 36, 2277-2291.	8.9	22
10	Social Parasitism in the Honeybee (Apis mellifera) Is Not Controlled by a Single SNP. Molecular Biology and Evolution, 2019, 36, 1764-1767.	8.9	7
11	A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics, 2019, 20, 275.	2.8	171
12	The genomic basis of adaptation to highâ€altitude habitats in the eastern honey bee (<i>Apis cerana</i>). Molecular Ecology, 2019, 28, 746-760.	3.9	30
13	Chromosomal inversions associated with environmental adaptation in honeybees. Molecular Ecology, 2019, 28, 1358-1374.	3.9	50
14	Developing reduced <scp>SNP</scp> assays from wholeâ€genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (<i>Apis mellifera) Tj ETQq0</i>	00 ngnBT /C)ver ±ø ck 10 Tf
15	Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants. Genome Biology and Evolution, 2018, 10, 276-290.	2.5	75
16	Rapid hybrid speciation in Darwin's finches. Science, 2018, 359, 224-228.	12.6	327
17	Multimodal surface matching with higher-order smoothness constraints. NeuroImage, 2018, 167, 453-465.	4.2	219
18	Whole genome SNP-associated signatures of local adaptation in honeybees of the Iberian Peninsula. Scientific Reports, 2018, 8, 11145.	3.3	24

MATTHEW T WEBSTER

#	Article	IF	CITATIONS
19	Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches. Genome Research, 2017, 27, 1004-1015.	5.5	152
20	Genomewide analysis of admixture and adaptation in the Africanized honeybee. Molecular Ecology, 2017, 26, 3603-3617.	3.9	44
21	Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genetics, 2017, 13, e1006792.	3.5	70
22	A practical guide to build <i>de-novo</i> assemblies for single tissues of non-model organisms: the example of a Neotropical frog. PeerJ, 2017, 5, e3702.	2.0	16
23	Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genetics, 2016, 12, e1006097.	3.5	31
24	Whole genome resequencing of a laboratory-adapted Drosophila melanogasterÂpopulation sample. F1000Research, 2016, 5, 2644.	1.6	6
25	A beak size locus in Darwin's finches facilitated character displacement during a drought. Science, 2016, 352, 470-474.	12.6	206
26	Adaptive radiation of Darwin's finches revisited using whole genome sequencing. BioEssays, 2016, 38, 14-20.	2.5	30
27	Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature, 2015, 518, 371-375.	27.8	766
28	Germline Methylation Patterns Determine the Distribution of Recombination Events in the Dog Genome. Genome Biology and Evolution, 2015, 7, 522-530.	2.5	16
29	Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera. PLoS Genetics, 2015, 11, e1005189.	3.5	98
30	Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics, 2015, 16, 474.	2.8	32
31	A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 2014, 46, 1081-1088.	21.4	273
32	Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genomics, 2014, 15, 465.	2.8	16
33	Genome-wide copy number variant discovery in dogs using the CanineHD genotyping array. BMC Genomics, 2014, 15, 210.	2.8	35
34	Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics, 2013, 14, 95.	2.8	38
35	The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 2013, 495, 360-364.	27.8	805
36	Death of <i>PRDM9</i> coincides with stabilization of the recombination landscape in the dog genome. Genome Research, 2012, 22, 51-63.	5.5	116

MATTHEW T WEBSTER

#	Article	IF	CITATIONS
37	Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the United States of America, 2012, 109, 8878-8883.	7.1	412
38	Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19345-19350.	7.1	217
39	Novel origins of copy number variation in the dog genome. Genome Biology, 2012, 13, R73.	9.6	86
40	Two Loci on Chromosome 5 Are Associated with Serum IgE Levels in Labrador Retrievers. PLoS ONE, 2012, 7, e39176.	2.5	21
41	From where did the <scp>W</scp> estern honeybee (<i><scp>A</scp>pis mellifera)</i> originate?. Ecology and Evolution, 2012, 2, 1949-1957.	1.9	121
42	Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends in Genetics, 2012, 28, 101-109.	6.7	97
43	A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs. PLoS Genetics, 2011, 7, e1001332.	3.5	118
44	A Locus on Chromosome 5 Is Associated with Dilated Cardiomyopathy in Doberman Pinschers. PLoS ONE, 2011, 6, e20042.	2.5	37
45	LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genetics, 2011, 7, e1002194.	3.5	88
46	Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping. PLoS Genetics, 2011, 7, e1002316.	3.5	339
47	Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464, 587-591.	27.8	985
48	Localization of Canine Brachycephaly Using an Across Breed Mapping Approach. PLoS ONE, 2010, 5, e9632.	2.5	101
49	The recombination landscape of the zebra finch <i>Taeniopygia guttata</i> genome. Genome Research, 2010, 20, 485-495.	5.5	212
50	Detecting positive selection within genomes: the problem of biased gene conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2571-2580.	4.0	130
51	Hotspots of Biased Nucleotide Substitutions in Human Genes. PLoS Biology, 2009, 7, e1000026.	5.6	134
52	Patterns of autosomal divergence between the human and chimpanzee genomes support an allopatric model of speciation. Gene, 2009, 443, 70-75.	2.2	7
53	The Legacy of Domestication: Accumulation of Deleterious Mutations in the Dog Genome. Molecular Biology and Evolution, 2008, 25, 2331-2336.	8.9	129
54	Is There Evidence for Convergent Evolution around Human Microsatellites?. Molecular Biology and Evolution, 2007, 24, 1097-1100.	8.9	14

MATTHEW T WEBSTER

#	Article	IF	CITATIONS
55	Strong Regional Biases in Nucleotide Substitution in the Chicken Genome. Molecular Biology and Evolution, 2006, 23, 1203-1216.	8.9	91
56	Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research, 2006, 16, 990-994.	5.5	163
57	Why Are Young and Old Repetitive Elements Distributed Differently in the Human Genome?. Journal of Molecular Evolution, 2005, 60, 290-296.	1.8	9
58	Male-Driven Biased Gene Conversion Governs the Evolution of Base Composition in Human Alu Repeats. Molecular Biology and Evolution, 2005, 22, 1468-1474.	8.9	64
59	Contrasting Patterns of Polymorphism and Divergence on the Z Chromosome and Autosomes in Two Ficedula Flycatcher Species. Genetics, 2005, 171, 1861-1873.	2.9	99
60	Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. Genome Research, 2005, 15, 120-125.	5.5	138
61	Reduced Variation on the Chicken Z Chromosome. Genetics, 2004, 167, 377-385.	2.9	66
62	Gene Expression, Synteny, and Local Similarity in Human Noncoding Mutation Rates. Molecular Biology and Evolution, 2004, 21, 1820-1830.	8.9	35
63	Fixation biases affecting human SNPs. Trends in Genetics, 2004, 20, 122-126.	6.7	50
64	Common 5′ β-globin RFLP haplotypes harbour a surprising level of ancestral sequence mosaicism. Human Genetics, 2003, 113, 123-139.	3.8	12
65	Mutation rate variation in the mammalian genome. Current Opinion in Genetics and Development, 2003, 13, 562-568.	3.3	135
66	A Low Rate of Simultaneous Double-Nucleotide Mutations in Primates. Molecular Biology and Evolution, 2003, 20, 47-53.	8.9	38
67	Compositional Evolution of Noncoding DNA in the Human and Chimpanzee Genomes. Molecular Biology and Evolution, 2003, 20, 278-286.	8.9	75
68	Is the Rate of Insertion and Deletion Mutation Male Biased?: Molecular Evolutionary Analysis of Avian and Primate Sex Chromosome Sequences. Genetics, 2003, 164, 259-268.	2.9	21
69	Microsatellite evolution inferred from human- chimpanzee genomic sequence alignments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8748-8753.	7.1	118
70	Deterministic Mutation Rate Variation in the Human Genome. Genome Research, 2002, 12, 1350-1356.	5.5	108
71	Analysis of variation in the human β-globin gene cluster using a novel DHPLC technique. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 501, 99-103.	1.0	13
72	Born to clot: the European burden. British Journal of Haematology, 1999, 105, 564-566.	2.5	100

#	Article	IF	CITATIONS
73	Born to clot: the European burden. British Journal of Haematology, 1999, 105, 564-566.	2.5	2