Derek Ward-Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726820/publications.pdf

Version: 2024-02-01

154 papers 11,974 citations

41344 49 h-index 27406 106 g-index

155 all docs

155 docs citations

155 times ranked 3458 citing authors

#	Article	IF	CITATIONS
1	From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the <i>Herschel </i> Sould Belt Survey. Astronomy and Astrophysics, 2010, 518, L102.	5.1	1,089
2	Submillimeter continuum observations of Rho Ophiuchi A - The candidate protostar VLA 1623 and prestellar clumps. Astrophysical Journal, 1993, 406, 122.	4.5	963
3	Clouds, filaments, and protostars: The <i>Herschel</i> àꀉHi-GAL Milky Way. Astronomy and Astrophysics, 2010, 518, L100.	5.1	573
4	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
5	Characterizing interstellar filaments with <i> Herschel < /i > in IC 5146. Astronomy and Astrophysics, 2011, 529, L6.</i>	5.1	560
6	<i>Herschel</i> view of the Taurus B211/3 filament and striations: evidence of filamentary growth?. Astronomy and Astrophysics, 2013, 550, A38.	5.1	393
7	A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the <i>Herschel </i> Gould Belt survey. Astronomy and Astrophysics, 2015, 584, A91.	5.1	328
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
9	Cluster-formation in the Rosette molecular cloud at the junctions of filaments. Astronomy and Astrophysics, 2012, 540, L11.	5.1	267
10	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
11	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
12	The Aquila prestellar core population revealed by <i>Herschel </i> . Astronomy and Astrophysics, 2010, 518, L106.	5.1	213
13	Filamentary structures and compact objects in the Aquila and Polaris clouds observed by <i>Herschel </i> . Astronomy and Astrophysics, 2010, 518, L103.	5.1	188
14	Filaments and ridges in VelaÂC revealed by <i>Herschel </i> : from low-mass to high-mass star-forming sites. Astronomy and Astrophysics, 2011, 533, A94.	5.1	188
15	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
16	A SCUBA survey of Orion – the low-mass end of the core mass function. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1413-1420.	4.4	179
17	Initial highlights of the HOBYS key program, the <i>Herschel</i> imaging survey of OB young stellar objects. Astronomy and Astrophysics, 2010, 518, L77.	5.1	174
18	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163

#	Article	IF	Citations
19	First Observations of the Magnetic Field Geometry in Prestellar Cores. Astrophysical Journal, 2000, 537, L135-L138.	4.5	146
20	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
21	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
22	<i>Herschel</i> -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale. Astronomy and Astrophysics, 2010, 518, L104.	5.1	136
23	The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1094-1122.	4.4	114
24	Reconstructing the density and temperature structure of prestellar cores from <i>Herschel </i> data: A case study for B68 and L1689B. Astronomy and Astrophysics, 2014, 562, A138.	5.1	104
25	The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament. Astrophysical Journal, 2017, 846, 122.	4.5	103
26	The Pipe Nebula as seen with i>Herschel i>: formation of filamentary structures by large-scale compression?. Astronomy and Astrophysics, 2012, 541, A63.	5.1	102
27	THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2. Astrophysical Journal, 2013, 767, 126.	4.5	100
28	BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION. Astrophysical Journal, 2016, 824, 134.	4. 5	99
29	A census of dense cores in the Taurus L1495 cloud from the <i>Herschel </i> Gould Belt Survey. Monthly Notices of the Royal Astronomical Society, 2016, 459, 342-356.	4.4	96
30	A <i>Herschel</i> study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE. Astronomy and Astrophysics, 2010, 518, L92.	5.1	87
31	First results from the Herschelâ~ Gould Belt Survey in Taurus. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1424-1433.	4.4	80
32	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
33	The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP. Monthly Notices of the Royal Astronomical Society, 2010, 401, 204-222.	4.4	72
34	Properties of the dense core population in Orion B as seen by the <i>Herschel</i> Gould Belt survey. Astronomy and Astrophysics, 2020, 635, A34.	5.1	71
35	The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex. Astronomy and Astrophysics, 2017, 603, A64.	5.1	69
36	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67

#	Article	IF	CITATIONS
37	Evidence for a spiral magnetic field configuration in the galaxy M51. Monthly Notices of the Royal Astronomical Society, 1987, 224, 299-305.	4.4	66
38	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2019, 624, A105.	5.1	66
39	Hydrodynamics of photoionized columns in the Eagle Nebula, M 16. Monthly Notices of the Royal Astronomical Society, 2001, 327, 788-798.	4.4	65
40	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
41	HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1. Astrophysical Journal, 2019, 872, 187.	4.5	64
42	A turbulent MHD model for molecular clouds and a new method of accretion on to star-forming cores. Monthly Notices of the Royal Astronomical Society, 2001, 327, 715-720.	4.4	62
43	The dust temperatures of the pre-stellar cores in the Oph main cloud and in other star-forming regions: consequences for the core mass function. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1390-1400.	4.4	59
44	THE <i>SPITZER</i> SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. II. THE CEPHEUS FLARE OBSERVED WITH IRAC AND MIPS. Astrophysical Journal, Supplement Series, 2009, 185, 198-249.	7.7	59
45	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57
46	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
47	SCUBA and Spitzer observations of the Taurus molecular cloud - pulling the bull's tail. Monthly Notices of the Royal Astronomical Society, 0, 384, 755-763.	4.4	55
48	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
49	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
50	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
51	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
52	Relative Alignment between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud Using Low- and High-density Tracers. Astrophysical Journal, 2019, 878, 110.	4.5	49
53	Isolated Star Formation: From Cloud Formation to Core Collapse. Science, 2002, 295, 76-81.	12.6	47
54	The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2557-2579.	4.4	47

#	Article	IF	Citations
55	The <i>Herschel</i> view of the dense core population in the Ophiuchus molecular cloud. Astronomy and Astrophysics, 2020, 638, A74.	5.1	47
56	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
57	The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A. Monthly Notices of the Royal Astronomical Society, 2012, 422, 521-541.	4.4	45
58	A far-infrared survey of molecular cloud cores. Monthly Notices of the Royal Astronomical Society, 2000, 311, 63-74.	4.4	44
59	SCUBA polarization observations of the magnetic fields in the pre-stellar cores L1498 and L1517B. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1445-1450.	4.4	44
60	AN AMMONIA SPECTRAL MAP OF THE L1495-B218 FILAMENTS IN THE TAURUS MOLECULAR CLOUD. I. PHYSICAL PROPERTIES OF FILAMENTS AND DENSE CORES. Astrophysical Journal, 2015, 805, 185.	4.5	44
61	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2020, 637, A39.	5.1	44
62	The molecular environment of S106 IR. Monthly Notices of the Royal Astronomical Society, 1993, 262, 839-854.	4.4	43
63	The <i>Herschel </i> view of star formation in the Rosette molecular cloud under the influence of NGCÂ2244. Astronomy and Astrophysics, 2010, 518, L83.	5.1	43
64	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
65	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
66	The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1996-2020.	4.4	42
67	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
68	The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1412-1428.	4.4	41
69	The 6-GHz multibeam maser survey – II. Statistical analysis and Galactic distribution of 6668-MHz methanol masers. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1383-1402.	4.4	41
70	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
71	THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS. Astrophysical Journal, 2016, 826, 95.	4.5	40
72	JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model. Astrophysical Journal, 2019, 880, 27.	4.5	40

#	Article	IF	CITATIONS
73	Molecular gas freeze-out in the pre-stellar core L1689B. Monthly Notices of the Royal Astronomical Society, 2002, 337, L17-L21.	4.4	39
74	The JCMT Gould Belt Survey: SCUBA-2 observations of radiative feedback in NGC 1333. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L10-L14.	3.3	39
75	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
76	The JCMT Gould Belt Survey: a first look at Southern Orion A with SCUBA-2. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4022-4048.	4.4	38
77	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ⟨i⟩Ï√/i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.	4.5	38
78	Magnetic Fields in the Infrared Dark Cloud G34.43+0.24. Astrophysical Journal, 2019, 883, 95.	4.5	38
79	The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1782-1796.	4.4	37
80	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
81	Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function. Astronomy and Astrophysics, 2015, 584, A111.	5.1	36
82	The initial conditions of isolated star formation - IV. C18O observations and modelling of the pre-stellar core L1689B. Monthly Notices of the Royal Astronomical Society, 2001, 323, 1025-1034.	4.4	35
83	Structure and stability in TMC-1: Analysis of NH ₃ molecular line and <i>Herschel</i> continuum data. Astronomy and Astrophysics, 2016, 590, A75.	5 . 1	35
84	Optical and submillimetre observations of Bok globules - tracing the magnetic field from low to high density. Monthly Notices of the Royal Astronomical Society, 2009, 398, 394-400.	4.4	34
85	Small-scale structure in the Rosette molecular cloud revealed by \hat{A} (i) Herschel (i). Astronomy and Astrophysics, 2010, 518, L91.	5.1	34
86	<i>Herschel</i> observations of embedded protostellar clusters inÂtheÂRosette molecular cloud. Astronomy and Astrophysics, 2010, 518, L84.	5.1	34
87	LUPUS I OBSERVATIONS FROM THE 2010 FLIGHT OF THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE FOR POLARIMETRY. Astrophysical Journal, 2014, 784, 116.	4.5	33
88	A catalogue of dense cores and young stellar objects in the Lupus complex based on <i>Herschel</i> Gould Belt Survey observations. Astronomy and Astrophysics, 2018, 619, A52.	5.1	33
89	Infrared and submillimetre observations of the ϕOphiuchi dark cloud. Monthly Notices of the Royal Astronomical Society, 1989, 241, 119-133.	4.4	32
90	SCUBA observations of the Horsehead nebula - what did the horse swallow?. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1201-1210.	4.4	32

#	Article	IF	Citations
91	First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey. Astrophysical Journal Letters, 2018, 860, L6.	8.3	32
92	The Far-infrared Polarization Spectrum of <i>i<i>i> Ophiuchi A from HAWC+/SOFIA Observations. Astrophysical Journal, 2019, 882, 113.</i></i>	4. 5	32
93	Filaments in the Lupus molecular clouds. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2036-2049.	4.4	31
94	THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B. Astrophysical Journal, 2016, 817, 167.	4.5	31
95	The JCMT and i>Herschel / i> Gould Belt Surveys: a comparison of SCUBA-2 and i>Herschel / i> data of dense cores in the Taurus dark cloud L1495. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1008-1025.	4.4	31
96	The dense cores and filamentary structure of the molecular cloud in Corona Australis: <i>Herschel</i> SPIRE and PACS observations from the <i>Herschel</i> Gould Belt Survey. Astronomy and Astrophysics, 2018, 615, A125.	5.1	30
97	First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud. Astrophysical Journal, 2018, 857, 10.	4.5	29
98	JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud. Astrophysical Journal, 2021, 907, 88.	4.5	29
99	SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD. Astrophysical Journal, 2016, 824, 84.	4.5	27
100	The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar discs in LÂ1495. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2472-2488.	4.4	26
101	The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1551-1573.	4.4	25
102	THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION A. Astrophysical Journal, 2016, 833, 44.	4.5	25
103	Why do starless cores appear more flattened than protostellar cores?. Monthly Notices of the Royal Astronomical Society, 2002, 330, 769-771.	4.4	24
104	Physical properties of the ambient medium and of dense cores in the Perseus star-forming region derived from <i>Herschel</i> Gould Belt Survey observations. Astronomy and Astrophysics, 2021, 645, A55.	5.1	24
105	The JCMT Gould Belt Survey: constraints on prestellar core properties in Orion A North. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1769-1781.	4.4	23
106	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	7.7	22
107	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
108	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8. 3	21

#	Article	IF	CITATIONS
109	The JCMT Gould Belt Survey: A First Look at IC 5146. Astrophysical Journal, 2017, 836, 132.	4.5	20
110	The JCMT Gould Belt Survey: first results from SCUBA-2 observations of the Cepheus Flare region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4255-4281.	4.4	20
111	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
112	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20
113	BIMA N ₂ H ⁺ 1-0 MAPPING OBSERVATIONS OF L183: FRAGMENTATION AND SPIN-UP IN A COLLAPSING, MAGNETIZED, ROTATING, PRESTELLAR CORE. Astrophysical Journal, 2009, 701, 1044-1052.	4.5	19
114	The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud. Astrophysical Journal, 2018, 856, 141.	4.5	19
115	An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud. II. CCS and HC ₇ N Chemistry and Three Modes of Star Formation in the Filaments. Astrophysical Journal, 2019, 871, 134.	4.5	19
116	The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region. Astrophysical Journal, 2021, 913, 85.	4.5	19
117	SOFIA/HAWC+ Traces the Magnetic Fields in NGC 1068. Astrophysical Journal, 2020, 888, 66.	4.5	18
118	The formation and evolution of low mass protostars. Astrophysics and Space Science, 1996, 239, 151-170.	1.4	17
119	The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps. Astrophysical Journal, 2021, 907, 33.	4.5	17
120	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2021, 646, A5.	5.1	17
121	The initial conditions of isolated star formation - IX. <i>Akari</i> pre-stellar core. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1851-1863.	4.4	16
122	Comparing Submillimeter Polarized Emission with Near-infrared Polarization of Background Stars for the Vela C Molecular Cloud. Astrophysical Journal, 2017, 837, 161.	4.5	16
123	Observations of Magnetic Fields Surrounding LkH $\hat{l}\pm 101$ Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
124	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
125	OMC-1 dust polarization in ALMA Band 7: diagnosing grain alignment mechanisms in the vicinity of Orion Source I. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3414-3433.	4.4	15
126	Herschel Gould Belt Survey Observations of Dense Cores in the Cepheus Flare Clouds. Astrophysical Journal, 2020, 904, 172.	4.5	14

#	Article	IF	CITATIONS
127	The immediate environment of the Class 0 protostar VLA 1623, on scales of â^1⁄450-100 au, observed at millimetre and centimetre wavelengths. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2812-2817.	4.4	13
128	The JCMT Gould Belt Survey: evidence for radiative heating and contamination in the W40 complex. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4150-4175.	4.4	13
129	Probing the cold magnetised Universe with SPICA-POL (B-BOP). Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	13
130	Evolutionary view through the starless cores in Taurus. Astronomy and Astrophysics, 2021, 653, A15.	5.1	13
131	The JCMT BISTRO Survey: An 850/450 ν m Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
132	Submillimeter Polarization Spectrum of the Carina Nebula. Astrophysical Journal, 2019, 872, 197.	4.5	12
133	The JCMT Gould Belt Survey: SCUBA-2 Data Reduction Methods and Gaussian Source Recovery Analysis. Astrophysical Journal, Supplement Series, 2018, 238, 8.	7.7	11
134	HAWC+ Far-infrared Observations of the Magnetic Field Geometry in M51 and NGC 891. Astronomical Journal, 2020, 160, 167.	4.7	11
135	Unveiling the Importance of Magnetic Fields in the Evolution of Dense Clumps Formed at the Waist of Bipolar H ii Regions: A Case Study of Sh 2-201 with JCMT SCUBA-2/POL-2. Astrophysical Journal, 2020, 897, 90.	4.5	9
136	Previously unresolved IRAS sources in the Oph A cloud. Monthly Notices of the Royal Astronomical Society, 1993, 265, 493-500.	4.4	8
137	The JCMT Legacy Survey of the Gould Belt: a first look at Taurus with HARP. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	7
138	The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2. Astrophysical Journal, 2018, 852, 73.	4.5	7
139	The JCMT BISTRO Survey: multiwavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1985-2002.	4.4	7
140	The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud. Astrophysical Journal, 2021, 913, 57.	4.5	6
141	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
142	Editorial: The Role of Magnetic Fields in the Formation of Stars. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	4
143	The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333. Astrophysical Journal Letters, 2021, 923, L9.	8.3	4
144	ISO Observations of Pre-Stellar Cores and Young Stellar Objects. Space Science Reviews, 2005, 119, 159-179.	8.1	3

#	Article	IF	CITATIONS
145	Effects of Magnetic Field Orientations in Dense Cores on Gas Kinematics in Protostellar Envelopes. Astrophysical Journal, 2022, 930, 67.	4. 5	3
146	SCUBA Polarisation Observations of the Magnetic Fields in Prestellar Cores. Astrophysics and Space Science, 2004, 292, 179-184.	1.4	2
147	The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud. Monthly Notices of the Royal Astronomical Society, 0, , stx042.	4.4	2
148	ALMA 13CO($\hat{A}=1\hat{a}\in 0$) observations of NGC 604 in M33: physical properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4511-4521.	4.4	1
149	AKARI, SCUBA2 AND HERSCHEL DATA OF PRE-STELLAR CORES. Publications of the Korean Astronomical Society, 2017, 32, 117-121.	0.0	1
150	Taxonomy of protoplanetary discs observed with ALMA. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2453-2490.	4.4	1
151	The evolution of triaxial molecular cores. Symposium - International Astronomical Union, 2003, 208, 395-396.	0.1	O
152	Observations of YSO Circumstellar Discs. Symposium - International Astronomical Union, 2004, 202, 393-395.	0.1	0
153	The growth of proto-stellar discs. , 2007, , .		O
154	SCUBA2 observations of prestellar cores. Proceedings of the International Astronomical Union, 2015, 11, 91-94.	0.0	0