Christophe Baley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the flax cell wall composition during development and after gravitropism by synchrotron fluorescence imaging. Industrial Crops and Products, 2022, 175, 114256.	5.2	6
2	Can we predict the microstructure of a non-woven flax/PLA composite through assessment of anisotropy in tensile properties?. Composites Science and Technology, 2022, 218, 109173.	7.8	4
3	Exploring the impact of Verticillium wilt disease on the mechanical properties of elementary flax (Linum usitatissimum L.) fibres. Industrial Crops and Products, 2022, 182, 114900.	5.2	0
4	Influence of water ageing on the mechanical properties of flax/PLA non-woven composites. Polymer Degradation and Stability, 2022, 200, 109957.	5.8	12
5	Interfacial and mechanical characterisation of biodegradable polymer-flax fibre composites. Composites Science and Technology, 2021, 201, 108529.	7.8	36
6	Multiscale Structure of Plant Fibers. , 2021, , 117-134.		2
7	Eighty years of composites reinforced by flax fibres: A historical review. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106333.	7.6	50
8	Exploring the dew retting feasibility of hemp in very contrasting European environments: Influence on the tensile mechanical properties of fibres and composites. Industrial Crops and Products, 2021, 164, 113337.	5.2	24
9	Investigations by AFM of Ageing Mechanisms in PLA-Flax Fibre Composites during Garden Composting. Polymers, 2021, 13, 2225.	4.5	8
10	Influence of Embedded Gap and Overlap Fiber Placement Defects on Interlaminar Properties of High Performance Composites. Materials, 2021, 14, 5332.	2.9	6
11	Flax xylem as composite material reinforcement: Microstructure and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106550.	7.6	6
12	A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105677.	7.6	49
13	Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial Crops and Products, 2020, 145, 111984.	5.2	102
14	A Review of Permeability and Flow Simulation for Liquid Composite Moulding of Plant Fibre Composites. Materials, 2020, 13, 4811.	2.9	15
15	Determinant morphological features of flax plant products and their contribution in injection moulded composite reinforcement. Composites Part C: Open Access, 2020, 3, 100054.	3.2	2
16	The potential of flax shives as reinforcements for injection moulded polypropylene composites. Industrial Crops and Products, 2020, 148, 112324.	5.2	27
17	Multi-scale mechanical characterization of flax fibres for the reinforcement of composite materials. , 2020, , 205-226.		1
18	Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation. Polymer Degradation and Stability, 2020, 177, 109166.	5.8	37

#	Article	IF	CITATIONS
19	Oriented granulometry to quantify fibre orientation distributions in synthetic and plant fibre composite preforms. Industrial Crops and Products, 2020, 152, 112548.	5.2	11
20	Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105504.	7.6	17
21	About the frontier between filling and reinforcement by fine flax particles in plant fibre composites. Industrial Crops and Products, 2019, 141, 111774.	5.2	10
22	Interfacial properties of hemp fiber/epoxy system measured by microdroplet test: Effect of relative humidity. Composites Science and Technology, 2019, 181, 107694.	7.8	20
23	Understanding the effect of moisture variation on the hygromechanical properties of porosity-controlled nonwoven biocomposites. Polymer Testing, 2019, 78, 105944.	4.8	29
24	Deeper insights into the moisture-induced hygroscopic and mechanical properties of hemp reinforced biocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 278-285.	7.6	24
25	Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. Frontiers in Plant Science, 2019, 10, 411.	3.6	78
26	Specific features of flax fibres used to manufacture composite materials. International Journal of Material Forming, 2019, 12, 1023-1052.	2.0	53
27	Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Industrial Crops and Products, 2019, 130, 25-33.	5.2	25
28	The remarkable slenderness of flax plant and pertinent factors affecting its mechanical stability. Biosystems Engineering, 2019, 178, 1-8.	4.3	24
29	Study of plant gravitropic response: Exploring the influence of lodging and recovery on the mechanical performances of flax fibers. Industrial Crops and Products, 2019, 128, 235-238.	5.2	9
30	Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydrate Polymers, 2019, 206, 48-56.	10.2	40
31	Recommended flax fibre density values for composite property predictions. Industrial Crops and Products, 2018, 114, 52-58.	5.2	54
32	Exploring the link between flexural behaviour of hemp and flax stems and fibre stiffness. Industrial Crops and Products, 2018, 113, 179-186.	5.2	29
33	Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing, 2018, 66, 303-311.	4.8	37
34	Flax stems: from a specific architecture to an instructive model for bioinspired composite structures. Bioinspiration and Biomimetics, 2018, 13, 026007.	2.9	30
35	Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Composites Part B: Engineering, 2018, 139, 64-74.	12.0	59
36	Analysis of Flax Fiber Cell-Wall Non-Cellulosic Polysaccharides Under Different Weather Conditions (Marylin Variety). Journal of Natural Fibers, 2018, 15, 539-544.	3.1	4

#	Article	IF	CITATIONS
37	Towards the design of high-performance plant fibre composites. Progress in Materials Science, 2018, 97, 347-408.	32.8	295
38	Monitoring temperature effects on flax cell-wall mechanical properties within a composite material using AFM. Polymer Testing, 2018, 69, 91-99.	4.8	17
39	Conventional or greenhouse cultivation of flax: What influence on the number and quality of flax fibers?. Industrial Crops and Products, 2018, 123, 111-117.	5.2	13
40	Investigation of the Mechanical Properties of Flax Cell Walls during Plant Development: The Relation between Performance and Cell Wall Structure. Fibers, 2018, 6, 6.	4.0	45
41	Tensile properties of flax fibers. , 2018, , 275-300.		11
42	Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction. Materials Today Communications, 2018, 16, 300-306.	1.9	46
43	Peeling experiments for hemp retting characterization targeting biocomposites. Industrial Crops and Products, 2018, 123, 573-580.	5.2	28
44	Influence of the scattering of flax fibres properties on flax/epoxy woven ply stiffness. Materials and Design, 2017, 122, 136-145.	7.0	31
45	Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Industrial Crops and Products, 2017, 108, 1-5.	5.2	20
46	Better insight into the nano-mechanical properties of flax fibre cell walls. Industrial Crops and Products, 2017, 97, 224-228.	5.2	66
47	Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polymer Degradation and Stability, 2017, 136, 1-9.	5.8	44
48	Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Industrial Crops and Products, 2017, 97, 56-64.	5.2	46
49	Hygroscopic expansion: A key point to describe natural fibre/polymer matrix interface bond strength. Composites Science and Technology, 2017, 151, 228-233.	7.8	60
50	Exploring two innovative recycling ways for poly-(propylene)-flax non wovens wastes. Polymer Degradation and Stability, 2017, 142, 89-101.	5.8	20
51	Is the low shear modulus of flax fibres an advantage for polymer reinforcement?. Materials Letters, 2016, 185, 534-536.	2.6	20
52	Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite. Polymer Degradation and Stability, 2016, 128, 77-88.	5.8	42
53	Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polymer Testing, 2016, 51, 174-180.	4.8	58
54	Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon–epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2016, 82, 198-207.	7.6	61

#	Article	IF	CITATIONS
55	Influence of processing temperature on mechanical performance of unidirectional polyamide 11–flax fibre composites. Industrial Crops and Products, 2016, 84, 151-165.	5.2	79
56	Flax/PP manufacture by automated fibre placement (AFP). Materials and Design, 2016, 94, 207-213.	7.0	23
57	Plant cell walls to reinforce composite materials: Relationship between nanoindentation and tensile modulus. Materials Letters, 2016, 167, 161-164.	2.6	30
58	Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement and Concrete Composites, 2016, 67, 60-72.	10.7	45
59	Influence of Stem Morphology and Fibers Stiffness on the Loading Stability of Flax. RILEM Bookseries, 2016, , 49-59.	0.4	2
60	Evaluation of the potential of three non-woven flax fiber reinforcements: Spunlaced, needlepunched and paper process mats. Industrial Crops and Products, 2016, 83, 194-205.	5.2	36
61	Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 2016, 80, 17-25.	5.2	36
62	Influence du taux de porosité sur les propriétés d'un composite non tissé lin/PP. Materiaux Et Techniques, 2016, 104, 405.	0.9	1
63	Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Industrial Crops and Products, 2015, 76, 1039-1048.	5.2	36
64	Influence of the morphology characters of the stem on the lodging resistance of Marylin flax. Industrial Crops and Products, 2015, 66, 27-37.	5.2	41
65	Understanding the lodging stability of green flax stems; The importance of morphology and fibre stiffness. Biosystems Engineering, 2015, 137, 9-21.	4.3	24
66	Optimization of the mechanical performance of UD flax/epoxy composites by selection of fibres along the stem. Composites Part A: Applied Science and Manufacturing, 2015, 77, 204-208.	7.6	38
67	Microstructure and tensile properties of carbon–epoxy laminates produced by automated fibre placement: Influence of a caul plate on the effects of gap and overlap embedded defects. Composites Part A: Applied Science and Manufacturing, 2015, 78, 124-134.	7.6	56
68	Fully biodegradable composites: Use of poly-(butylene-succinate) as a matrix and to plasticize I-poly-(lactide)-flax blends. Industrial Crops and Products, 2015, 64, 251-257.	5.2	45
69	Porosity in Ocean Racing Yacht Composites: a Review. Applied Composite Materials, 2015, 22, 13-28.	2.5	14
70	Interfacial properties of flax fibre–epoxy resin systems: Existence of a complex interphase. Composites Science and Technology, 2014, 100, 152-157.	7.8	55
71	Elementary flax fibre tensile properties: Correlation between stress–strain behaviour and fibre composition. Industrial Crops and Products, 2014, 52, 762-769.	5.2	97
72	Average tensile properties of French elementary flax fibers. Materials Letters, 2014, 122, 159-161.	2.6	105

#	Article	IF	CITATIONS
73	Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Composites Part A: Applied Science and Manufacturing, 2014, 64, 159-166.	7.6	60
74	A multi-scale study of the interface between natural fibres and a biopolymer. Composites Part A: Applied Science and Manufacturing, 2014, 65, 161-168.	7.6	28
75	Comparison of the properties of scutched flax and flax tow for composite material reinforcement. Industrial Crops and Products, 2014, 61, 284-292.	5.2	40
76	Coupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre composites development. Journal of Cleaner Production, 2014, 83, 61-69.	9.3	58
77	Tensile properties of elementary fibres of flax and glass: Analysis of reproducibility and scattering. Materials Letters, 2014, 130, 289-291.	2.6	71
78	Influence du rouissage du lin sur les propriétés mécaniques des fibres et des composites injectés lin/polypropylène. Revue Des Composites Et Des Materiaux Avances, 2014, 24, 139-153.	0.6	0
79	Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Composites Part A: Applied Science and Manufacturing, 2013, 51, 62-70.	7.6	167
80	Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Industrial Crops and Products, 2013, 49, 755-767.	5.2	124
81	A study of the yearly reproducibility of flax fiber tensile properties. Industrial Crops and Products, 2013, 50, 400-407.	5.2	67
82	Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products, 2013, 44, 343-351.	5.2	163
83	Exploring durability of interfaces in flax fibre/epoxy micro-composites. Composites Part A: Applied Science and Manufacturing, 2013, 48, 121-128.	7.6	87
84	Study of the fibre morphology stability in polypropylene-flax composites. Polymer Degradation and Stability, 2013, 98, 1216-1224.	5.8	58
85	Influence of Through-Thickness Pinning on Composite Shear Properties. Applied Composite Materials, 2012, 19, 853-864.	2.5	7
86	Nanoindentation contribution to mechanical characterization of vegetal fibers. Composites Part B: Engineering, 2012, 43, 2861-2866.	12.0	31
87	Compressive and Tensile Behaviours of PLLA Matrix Composites Reinforced with Randomly Dispersed Flax Fibres. Applied Composite Materials, 2012, 19, 171-188.	2.5	26
88	PLLA/Flax Mat/Balsa Bio-Sandwich—Environmental Impact and Simplified Life Cycle Analysis. Applied Composite Materials, 2012, 19, 363-378.	2.5	55
89	Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Industrial Crops and Products, 2012, 39, 31-39.	5.2	100
90	Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite. Journal of Materials Science, 2012, 47, 2175-2181.	3.7	17

#	Article	IF	CITATIONS
91	Environmental Impact Analysis of the Production of Flax Fibres to be Used as Composite Material Reinforcement. Journal of Biobased Materials and Bioenergy, 2011, 5, 153-165.	0.3	146
92	Replacement of Glass/Unsaturated Polyester Composites by Flax/PLLA Biocomposites: Is It Justified?. Journal of Biobased Materials and Bioenergy, 2011, 5, 466-482.	0.3	27
93	Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite. International Journal of Polymer Science, 2011, 2011, 1-11.	2.7	26
94	What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite?. Polymer Degradation and Stability, 2011, 96, 1732-1739.	5.8	57
95	Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters, 2011, 65, 797-800.	2.6	125
96	Could oleaginous flax fibers be used as reinforcement for polymers?. Industrial Crops and Products, 2011, 34, 1556-1563.	5.2	70
97	PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties. Applied Composite Materials, 2011, 18, 421-438.	2.5	50
98	Interfacial bonding of Flax fibre/Poly(l-lactide) bio-composites. Composites Science and Technology, 2010, 70, 231-239.	7.8	144
99	Macroscopic analysis of interfacial properties of flax/PLLA biocomposites. Composites Science and Technology, 2010, 70, 1612-1620.	7.8	30
100	Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Industrial Crops and Products, 2010, 32, 662-667.	5.2	89
101	Effects of thermo mechanical processing on the mechanical properties ofÂbiocomposite flax fibers evaluated by nanoindentation. Polymer Degradation and Stability, 2010, 95, 1488-1494.	5.8	47
102	Effect of compaction on mechanical and thermal properties of hemp concrete. European Journal of Environmental and Civil Engineering, 2010, 14, 545-560.	2.1	92
103	Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polymer Degradation and Stability, 2009, 94, 297-305.	5.8	145
104	Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polymer Testing, 2009, 28, 668-672.	4.8	67
105	Probing cellulose/polylactic acid interactions in model biocomposite by colloidal force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 47-55.	4.7	23
106	Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. European Journal of Environmental and Civil Engineering, 2009, 13, 1039-1050.	2.1	88
107	Seawater ageing of low styrene emission resins for marine composites: Mechanical behaviour and nano-indentation studies. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1024-1032.	7.6	34
108	Adhesion Force Mapping of Raw and Treated Flax Fibres Using AFM Force-Volume. Journal of Scanning Probe Microscopy, 2009, 4, 66-72.	0.0	10

#	Article	IF	CITATIONS
109	Transverse Properties of Carbon Fibres by Nano-Indentation and Micro-mechanics. Applied Composite Materials, 2008, 15, 61-73.	2.5	63
110	Marine Composites Based on Low Styrene Content Resins. Influence of Lamination Procedure and Peel Plies on Interlaminar Resistance. Applied Composite Materials, 2008, 15, 87-97.	2.5	7
111	High modulus carbon fibre composites: Correlation between transverse tensile and mode I interlaminar fracture properties. Materials Letters, 2008, 62, 1096-1099.	2.6	21
112	Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters, 2008, 62, 2143-2145.	2.6	145
113	Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1471-1478.	7.6	177
114	Lins oléagineux d'hiver, une source de fibres cellulosiques à valoriser. Revue Des Composites Et Des Materiaux Avances, 2008, 18, 151-156.	0.6	3
115	Colloid force measurements between cellulose and polylactic acid. Revue Des Composites Et Des Materiaux Avances, 2008, 18, 177-183.	0.6	2
116	Optimisation de l'usage du béton de chanvre dans la conception d'un écomatériau pour le génie civil. Revue Des Composites Et Des Materiaux Avances, 2008, 18, 227-232.	0.6	3
117	An AFM study of the effect of chemical treatments on the surface microstructure and adhesion properties of flax fibres. Composite Interfaces, 2007, 14, 715-731.	2.3	27
118	Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?. Composites Science and Technology, 2007, 67, 462-470.	7.8	390
119	Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1626-1637.	7.6	202
120	Mechanical Properties of Composites Based on Low Styrene Emission Polyester Resins for Marine Applications. Applied Composite Materials, 2006, 13, 1-22.	2.5	41
121	Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Materials Letters, 2006, 60, 2984-2987.	2.6	130
122	Characterization of Interdiffusion between PVDF and Stereoregular PMMA by Using ATR-FTIR Spectroscopy. Macromolecular Symposia, 2005, 222, 265-272.	0.7	6
123	Influence of the Absorbed Water on the Tensile Strength of Flax Fibers. Macromolecular Symposia, 2005, 222, 195-202.	0.7	67
124	Application of Interlaminar Tests to Marine Composites. Relation between Glass Fibre/Polymer Interfaces and Interlaminar Properties of Marine Composites. Applied Composite Materials, 2004, 11, 77-98.	2.5	32
125	Application of Interlaminar Tests to Marine Composites. A Literature Review. Applied Composite Materials, 2004, 11, 99-126.	2.5	64