Corrie Moreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726492/publications.pdf

Version: 2024-02-01

89 papers 4,397 citations

30 h-index 61 g-index

98 all docs 98 docs citations 98 times ranked 5316 citing authors

#	Article	IF	CITATIONS
1	Estimating species relative abundances from museum records. Methods in Ecology and Evolution, 2023, 14, 431-443.	5.2	14
2	Phylogenomics and Fossil Data Inform the Systematics and Geographic Range Evolution of a Diverse Neotropical Ant Lineage. Insect Systematics and Diversity, 2022, 6, .	1.7	8
3	Edward O. Wilson (1929–2021). Nature Ecology and Evolution, 2022, 6, 240-241.	7.8	1
4	A framework for educating and empowering students by teaching about history and consequences of bias in STEM. Pathogens and Disease, 2022, 80, .	2.0	2
5	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
6	Ants: Phylogeny and Classification. , 2021, , 52-69.		6
7	<i>Wolbachia</i> Across Social Insects: Patterns and Implications. Annals of the Entomological Society of America, 2021, 114, 206-218.	2.5	12
8	Localization of Bacterial Communities within Gut Compartments across <i>Cephalotes</i> Turtle Ants. Applied and Environmental Microbiology, 2021, 87, .	3.1	14
9	Assessing Biosynthetic Gene Cluster Diversity of Specialized Metabolites in the Conserved Gut Symbionts of Herbivorous Turtle Ants. Frontiers in Microbiology, 2021, 12, 678100.	3.5	10
10	Phylogenetic analysis and trait evolution of ant cocoons. Insect Systematics and Evolution, 2021, 53, 60-77.	0.7	3
11	Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction. Biology Letters, 2021, 17, 20210123.	2.3	15
12	The genomic basis of army ant chemosensory adaptations. Molecular Ecology, 2021, 30, 6627-6641.	3.9	9
13	Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nature Communications, 2021, 12, 676.	12.8	35
14	Fund natural-history museums, not de-extinction. Nature, 2021, 598, 32-32.	27.8	3
15	The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae). Neotropical Entomology, 2020, 49, 52-60.	1.2	13
16	The Evolution and Biogeography of Wolbachia in Ants (Hymenoptera: Formicidae). Diversity, 2020, 12, 426.	1.7	13
17	Competition with insectivorous ants as a contributor to low songbird diversity at low elevations in the eastern Himalaya. Ecology and Evolution, 2020, 10, 4280-4290.	1.9	13
18	Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Molecular Ecology, 2020, 29, 1372-1385.	3.9	15

#	Article	IF	Citations
19	Symbioses among ants and microbes. Current Opinion in Insect Science, 2020, 39, 1-5.	4.4	36
20	Spine and dine: A key defensive trait promotes ecological success in spiny ants. Ecology and Evolution, 2020, 10, 5852-5863.	1.9	9
21	Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Scientific Reports, 2020, 10, 7350.	3.3	13
22	Ants: Phylogeny and Classification. , 2020, , 1-18.		12
23	Influence of host phylogeny, geographical location and seed harvesting diet on the bacterial community of globally distributed (i> Pheidole (i> ants. PeerJ, 2020, 8, e8492.	2.0	9
24	Intestinal Symbionts. , 2020, , 1-5.		0
25	Myrmecology: majority of females only within the colony. Boletim Do Museu Paraense EmÃłio Goeldi Ciências Naturais (Impresso), 2020, 15, 17-26.	0.2	2
26	Dietary specialization in mutualistic acaciaâ€ants affects relative abundance but not identity of hostâ€associated bacteria. Molecular Ecology, 2019, 28, 900-916.	3.9	34
27	Analysis of tropical and temperate elevational gradients in arthropod abundance. Frontiers of Biogeography, 2019, $11,\ldots$	1.8	27
28	Diversity of Wolbachia Associated with the Giant Turtle Ant, Cephalotes atratus. Current Microbiology, 2019, 76, 1330-1337.	2.2	19
29	Will DNA barcoding meet taxonomic needs?. Science, 2019, 365, 873-874.	12.6	22
30	A Phylogenetic Analysis of the Dirt Ants, Basiceros (Formicidae: Myrmicinae): Inferring Life Histories Through Morphological Convergence. Insect Systematics and Diversity, 2019, 3, .	1.7	5
31	Coevolution of Genome Architecture and Social Behavior. Trends in Ecology and Evolution, 2019, 34, 844-855.	8.7	49
32	Assessing the Diversity of Endogenous Viruses Throughout Ant Genomes. Frontiers in Microbiology, 2019, 10, 1139.	3.5	28
33	Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nature Communications, 2018, 9, 964.	12.8	115
34	Introduction: The hostâ€associated microbiome: Pattern, process and function. Molecular Ecology, 2018, 27, 1749-1765.	3.9	46
35	Entomological Collections in the Age of Big Data. Annual Review of Entomology, 2018, 63, 513-530.	11.8	49
36	Ant–plant interactions evolved through increasing interdependence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12253-12258.	7.1	71

#	Article	IF	CITATIONS
37	Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution; International Journal of Organic Evolution, 2018, 72, 2144-2155.	2.3	25
38	Insights into Circovirus Host Range from the Genomic Fossil Record. Journal of Virology, 2018, 92, .	3.4	39
39	The structured diversity of specialized gut symbionts of the New World army ants. Molecular Ecology, 2017, 26, 3808-3825.	3.9	62
40	Novel approach to heritability detection suggests robustness to paternal genotype in a complex morphological trait. Ecology and Evolution, 2017, 7, 4179-4191.	1.9	1
41	Community analysis of microbial sharing and specialization in a Costa Rican ant–plant–hemipteran symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162770.	2.6	19
42	Tracing the phylogeographic history of Southeast Asian long-tailed macaques through mitogenomes of museum specimens. Molecular Phylogenetics and Evolution, 2017, 116, 227-238.	2.7	16
43	Digitization of museum collections holds the potential to enhance researcher diversity. Nature Ecology and Evolution, 2017, 1, 1789-1790.	7.8	42
44	Diversity and Persistence of the Gut Microbiome of the Giant Neotropical Bullet Ant. Integrative and Comparative Biology, 2017, 57, 682-689.	2.0	21
45	Defensive traits exhibit an evolutionary tradeâ€off and drive diversification in ants. Evolution; International Journal of Organic Evolution, 2017, 71, 315-328.	2.3	77
46	Early and dynamic colonization of Central America drives speciation in Neotropical army ants. Molecular Ecology, 2017, 26, 859-870.	3.9	48
47	Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Frontiers in Systems Neuroscience, 2017, 11, 74.	2.5	61
48	An Empirical Test of Reduced-Representation Genomics to Infer Species-Level Phylogenies for Two Ant Groups. Insect Systematics and Diversity, 2017, 1 , .	1.7	5
49	Subcaste-specific evolution of head size in the ant genus <i>Pheidole</i> Linnean Society, 2016, 118, 472-485.	1.6	19
50	Out of Southâ€East Asia: phylogeny and biogeography of the spiny ant genus <i>Polyrhachis</i> Smith (Hymenoptera: Formicidae). Systematic Entomology, 2016, 41, 369-378.	3.9	19
51	A new ant genus from southern Argentina and southern Chile, Patagonomyrmex (Hymenoptera:) Tj ETQq $1\ 1\ 0.78$ 4	1314 rgBT 0.5	<i>L</i> Overlock
52	Comparative genomics reveals convergent rates of evolution in ant–plant mutualisms. Nature Communications, 2016, 7, 12679.	12.8	47
53	Colony size evolution in ants: macroevolutionary trends. Insectes Sociaux, 2016, 63, 291-298.	1.2	30
54	The Dynamic Discipline of Species Delimitation: Progress Toward Effectively Recognizing Species Boundaries in Natural Populations. , 2015, , 11-44.		44

#	Article	IF	CITATIONS
55	Evolutionary transitions of complex labile traits: Silk weaving and arboreal nesting in Polyrhachis ants. Behavioral Ecology and Sociobiology, 2015, 69, 449-458.	1.4	13
56	Evolution of the indoor biome. Trends in Ecology and Evolution, 2015, 30, 223-232.	8.7	75
57	An Ancient Divide in a Contiguous Rainforest: Endemic Earthworms in the Australian Wet Tropics. PLoS ONE, 2015, 10, e0136943.	2.5	15
58	Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome. PLoS ONE, 2014, 9, e99641.	2.5	73
59	Ants of the Florida Keys: Species Accounts, Biogeography, and Conservation (Hymenoptera:) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
60	DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. MicrobiologyOpen, 2014, 3, 910-921.	3.0	89
61	Correlates of gut community composition across an ant species (<i><scp>C</scp>ephalotes) Tj ETQq1 1 0.784311284-1300.</i>	14 rgBT /O 3.9	Overlock 10 T 82
62	Investment in higher order central processing regions is not constrained by brain size in social insects. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140217.	2.6	22
63	Body size variation and caste ratios in geographically distinct populations of the invasive big-headed ant, <i>Pheidole megacephala </i> (Hymenoptera: Formicidae). Biological Journal of the Linnean Society, 2014, 113, 423-438.	1.6	23
64	Surveying the Microbiome of Ants: Comparing 454 Pyrosequencing with Traditional Methods To Uncover Bacterial Diversity. Applied and Environmental Microbiology, 2013, 79, 525-534.	3.1	122
65	TESTING THE MUSEUM VERSUS CRADLE TROPICAL BIOLOGICAL DIVERSITY HYPOTHESIS: PHYLOGENY, DIVERSIFICATION, AND ANCESTRAL BIOGEOGRAPHIC RANGE EVOLUTION OF THE ANTS. Evolution; International Journal of Organic Evolution, 2013, 67, 2240-2257.	2.3	290
66	DNA preservation: a test of commonly used preservatives for insects. Invertebrate Systematics, 2013, 27, 81.	1.3	49
67	Bacterial Infections across the Ants: Frequency and Prevalence ofWolbachia, Spiroplasma, andAsaia. Psyche: Journal of Entomology, 2013, 2013, 1-11.	0.9	50
68	A New Species of Seed-harvester Ant, <i>Pogonomyrmex hoelldobleri</i> (Hymenoptera:) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
69	Report of the 13th Genomic Standards Consortium Meeting, Shenzhen, China, March 4–7, 2012 Standards in Genomic Sciences, 2012, 6, 276-286.	1.5	3
70	Inferring Phylogenies from RAD Sequence Data. PLoS ONE, 2012, 7, e33394.	2.5	281
71	Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts. PLoS ONE, 2012, 7, e37691.	2.5	11
72	A Veritable Menagerie of Heritable Bacteria from Ants, Butterflies, and Beyond: Broad Molecular Surveys and a Systematic Review. PLoS ONE, 2012, 7, e51027.	2.5	107

#	Article	IF	CITATIONS
73	Highly similar microbial communities are shared among related and trophically similar ant species. Molecular Ecology, 2012, 21, 2282-2296.	3.9	159
74	Fossil Cross-validation of the Dated Ant Phylogeny (Hymenoptera: Formicidae). Entomologica Americana, 2011, 117, 127-133.	0.2	3
75	Fossil Cross-Validation of the Dated Ant Phylogeny (Hymenoptera: Formicidae). Entomologica Americana, 2011, 117, 22-27.	0.2	3
76	What Do Molecular Clocks Tell Us About the Evolution of Ants?. American Entomologist, 2011, 57, 52-53.	0.2	2
77	Biogeography and morphological evolution in a Pacific island ant radiation. Molecular Ecology, 2011, 20, 114-130.	3.9	34
78	Army Ants Harbor a Host-Specific Clade of <i>Entomoplasmatales</i> Environmental Microbiology, 2011, 77, 346-350.	3.1	68
79	SPECIALIZATION AND GEOGRAPHIC ISOLATION AMONG (i>WOLBACHIA (i>SYMBIONTS FROM ANTS AND LYCAENID BUTTERFLIES. Evolution; International Journal of Organic Evolution, 2009, 63, 624-640.	2.3	148
80	Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21236-21241.	7.1	318
81	Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera:) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 5
82	Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae). Molecular Phylogenetics and Evolution, 2008, 49, 477-487.	2.7	20
83	The raiding success of Pheidole megacephala on other ants in both its native and introduced ranges. Comptes Rendus - Biologies, 2008, 331, 631-635.	0.2	18
84	The predatory behavior of Pheidole megacephala. Comptes Rendus - Biologies, 2007, 330, 701-709.	0.2	22
85	Predatory abilities favour the success of the invasive ant Pheidole megacephala in an introduced area. Journal of Applied Entomology, 2007, 131, 625-629.	1.8	27
86	Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science, 2006, 312, 101-104.	12.6	684
87	Ontogenetic Diet Change in the Arthroleptid Frog Schoutedenella xenodactyloides. Journal of Herpetology, 2006, 40, 388-394.	0.5	19
88	Bulldog Ants of the Eocene Okanagan Highlands and History of the Subfamily (Hymenoptera:) Tj ETQq0 0 0 rgBT	Qverlock	19.Tf 50 142
89	Influence of interspecific competition on the recruitment behavior and liquid food transport in the tramp ant species Pheidole megacephala. Die Naturwissenschaften, 2005, 92, 324-327.	1.6	27