
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive evolution in invasive species. Trends in Plant Science, 2008, 13, 288-294.	8.8	724
2	Something in the way you move: dispersal pathways affect invasion success. Trends in Ecology and Evolution, 2009, 24, 136-144.	8.7	680
3	Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 2011, 4, 326-337.	3.1	617
4	Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 2002, 156, 49-74.	3.2	577
5	Seed supply for broadscale restoration: maximizing evolutionary potential. Evolutionary Applications, 2008, 1, 587-597.	3.1	495
6	Chloroplast DNA variation in European white oaks. Forest Ecology and Management, 2002, 156, 5-26.	3.2	424
7	Value of longâ€ŧerm ecological studies. Austral Ecology, 2012, 37, 745-757.	1.5	326
8	The extent of forest in dryland biomes. Science, 2017, 356, 635-638.	12.6	300
9	Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics, 2013, 14, 1-10.	1.5	290
10	Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources, 2011, 11, 1093-1101.	4.8	228
11	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 2016, 5, 21.	6.4	204
12	Effective Seed Dispersal Across a Fragmented Landscape. Science, 2006, 311, 628-628.	12.6	201
13	Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biological Journal of the Linnean Society, 2004, 82, 467-474.	1.6	189
14	Forensic timber identification: It's time to integrate disciplines to combat illegal logging. Biological Conservation, 2015, 191, 790-798.	4.1	176
15	Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science, 2002, 59, 777-787.	2.0	161
16	Improving biodiversity monitoring. Austral Ecology, 2012, 37, 285-294.	1.5	130
17	Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25, 866-872.	2.9	129
18	Leaf morphology shift linked to climate change. Biology Letters, 2012, 8, 882-886.	2.3	127

ANDREW J LOWE

#	Article	IF	CITATIONS
19	Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 2016, 17, 305-320.	1.5	122
20	HISTORICAL AND CONTEMPORARY MATING PATTERNS IN REMNANT POPULATIONS OF THE FOREST TREEFRAXINUS EXCELSIOR L. Evolution; International Journal of Organic Evolution, 2005, 59, 979-990.	2.3	114
21	Refugia within refugia: the case study of a canopy tree (<i>Eurycorymbus cavaleriei</i>) in subtropical China. Journal of Biogeography, 2009, 36, 2156-2164.	3.0	111
22	Genomic evidence for the parallel evolution of coastal forms in the <i>Senecio lautus</i> complex. Molecular Ecology, 2013, 22, 2941-2952.	3.9	109
23	Bridging the gap: a genetic assessment framework for populationâ€level threatened plant conservation prioritization and decisionâ€making. Diversity and Distributions, 2016, 22, 174-188.	4.1	105
24	Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International, 2020, 145, 106084.	10.0	103
25	Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks?. Forest Ecology and Management, 2002, 156, 75-87.	3.2	101
26	Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras. PLoS ONE, 2011, 6, e26841.	2.5	100
27	Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus - Geoscience, 2013, 345, 284-296.	1.2	94
28	Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. Journal of Biogeography, 2009, 36, 1035-1054.	3.0	91
29	Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes, 2002, 2, 7-11.	1.7	90
30	Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 341-348.	2.6	88
31	Priority Actions to Improve Provenance Decision-Making. BioScience, 2018, 68, 510-516.	4.9	87
32	High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biological Conservation, 2018, 217, 113-120.	4.1	81
33	Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences, 2017, 14, 481-495.	3.3	75
34	High Nuclear Genetic Diversity, High Levels of Outcrossing and Low Differentiation Among Remnant Populations of Quercus petraea at the Margin of its Range in Ireland. Annals of Botany, 2004, 93, 691-697.	2.9	74
35	A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Molecular Ecology, 2009, 18, 2945-2960.	3.9	70
36	Revegetation rewilds the soil bacterial microbiome of an old field. Molecular Ecology, 2017, 26, 2895-2904.	3.9	68

#	Article	IF	CITATIONS
37	CONVERGENCE AND DIVERGENCE DURING THE ADAPTATION TO SIMILAR ENVIRONMENTS BY AN AUSTRALIAN GROUNDSEL. Evolution; International Journal of Organic Evolution, 2013, 67, 2515-2529.	2.3	66
38	Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Molecular Ecology, 2007, 16, 4662-4673.	3.9	64
39	Relating Urban Biodiversity to Human Health With the †Holobiont' Concept. Frontiers in Microbiology, 2019, 10, 550.	3.5	64
40	Opportunities for Improved Transparency in the Timber Trade through Scientific Verification. BioScience, 2016, 66, 990-998.	4.9	60
41	Pollen diversity matters: revealing the neglected effect of pollen diversity on fitness in fragmented landscapes. Molecular Ecology, 2012, 21, 5955-5968.	3.9	57
42	Genetic diversity and structure of the Australian flora. Diversity and Distributions, 2017, 23, 41-52.	4.1	56
43	Did Kauri (Agathis: Araucariaceae) Really Survive the Oligocene Drowning of New Zealand?. Systematic Biology, 2010, 59, 594-602.	5.6	55
44	Shifts in reproductive assurance strategies and inbreeding costs associated with habitat fragmentation in Central American mahogany. Ecology Letters, 2012, 15, 444-452.	6.4	55
45	Advancing DNA Barcoding and Metabarcoding Applications for Plants Requires Systematic Analysis of Herbarium Collections—An Australian Perspective. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	55
46	Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11615-11620.	7.1	53
47	The founding charter of the Genomic Observatories Network. GigaScience, 2014, 3, 2.	6.4	51
48	Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Diversity and Distributions, 2015, 21, 279-289.	4.1	50
49	Landscape biodiversity correlates with respiratory health in Australia. Journal of Environmental Management, 2018, 206, 113-122.	7.8	50
50	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010 – 31 July 2010. Molecular Ecology Resources, 2010, 10, 1106-1108.	4.8	48
51	Predicting reproductive success of insect- versus bird-pollinated scattered trees in agricultural landscapes. Biological Conservation, 2009, 142, 888-898.	4.1	45
52	Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population. Journal of Animal Ecology, 2012, 81, 940-952.	2.8	44
53	The Applicat ion of DNA methods to Timber Tracking and Origin Verificat ion. IAWA Journal, 2011, 32, 251-262.	2.7	43
54	Networked and embedded scientific experiments will improve restoration outcomes. Frontiers in Ecology and the Environment, 2018, 16, 288-294.	4.0	43

ANDREW J LOWE

#	Article	IF	CITATIONS
55	Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restoration Ecology, 2020, 28, S322.	2.9	43
56	Testing Putative African Tropical Forest Refugia Using Chloroplast and Nuclear DNA Phylogeography. Tropical Plant Biology, 2010, 3, 50-58.	1.9	40
57	Palaeodistribution modelling and genetic evidence highlight differential postâ€glacial range shifts of a rain forest conifer distributed across a latitudinal gradient. Journal of Biogeography, 2012, 39, 2292-2302.	3.0	40
58	Identifying Centres of Plant Biodiversity in South Australia. PLoS ONE, 2016, 11, e0144779.	2.5	40
59	Genetic Consequences of Multigenerational and Landscape Colonisation Bottlenecks for a Neotropical Forest Pioneer Tree, Vochysia ferruginea. Tropical Plant Biology, 2010, 3, 14-27.	1.9	39
60	The biodiversity impacts of non-native species should not be extrapolated from biased single-species studies. Biodiversity and Conservation, 2018, 27, 785-790.	2.6	36
61	Evolutionary Diversification of New Caledonian Araucaria. PLoS ONE, 2014, 9, e110308.	2.5	36
62	Routes of origin of two recently evolved hybrid taxa:Senecio vulgarisvar.hibernicusand York radiate groundsel (Asteraceae). American Journal of Botany, 2000, 87, 1159-1167.	1.7	35
63	Molecular Markers and the Management of Tropical Trees: the Case of Indigenous Fruits. Tropical Plant Biology, 2009, 2, 1-12.	1.9	35
64	A DNA Method to Verify the Integrity of Timber Supply Chains; Confirming the Legal Sourcing of Merbau Timber From Logging Concession to Sawmill. Silvae Genetica, 2010, 59, 263-268.	0.8	34
65	Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. Annals of Botany, 2010, 106, 1009-1017.	2.9	33
66	Clarifying climate change adaptation responses for scattered trees in modified landscapes. Journal of Applied Ecology, 2011, 48, 637-641.	4.0	32
67	Chloroplast DNA Microsatellites Reveal Contrasting Phylogeographic Structure in Mahogany (Swietenia macrophylla King, Meliaceae) from Amazonia and Central America. Tropical Plant Biology, 2010, 3, 40-49.	1.9	31
68	A georeferenced implementation of weighted endemism. Methods in Ecology and Evolution, 2015, 6, 845-852.	5.2	31
69	An investigation into effects of long-distance seed dispersal on organelle population genetic structure and colonization rate: a model analysis. Heredity, 2004, 93, 566-576.	2.6	30
70	Opportunities for Integrated Ecological Analysis across Inland Australia with Standardised Data from Ausplots Rangelands. PLoS ONE, 2017, 12, e0170137.	2.5	30
71	Biogeographic concepts define invasion biology. Trends in Ecology and Evolution, 2009, 24, 586-586.	8.7	29
72	Local maladaptation in a foundation tree species: Implications for restoration. Biological Conservation, 2016, 203, 226-232.	4.1	29

#	Article	IF	CITATIONS
73	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	1.9	29
74	Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia. PLoS ONE, 2017, 12, e0178681.	2.5	29
75	A Vegetation and Soil Survey Method for Surveillance Monitoring of Rangeland Environments. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	28
76	Diversification history and hybridisation of Dacrydium (Podocarpaceae) in remote Oceania. Australian Journal of Botany, 2011, 59, 262.	0.6	27
77	â€ [~] Sum of inverse range-sizes' (SIR), a biodiversity metric with many names and interpretations. Biodiversity and Conservation, 2015, 24, 2877-2882.	2.6	27
78	Origins of the New Allopolyploid Species Senecio cambrensis (Asteraceae) and its Relationship to the Canary Islands Endemic Senecio teneriffae. American Journal of Botany, 1996, 83, 1365.	1.7	26
79	Finding needles in a genomic haystack: targeted capture identifies clear signatures of selection in a nonmodel plant species. Molecular Ecology, 2016, 25, 4216-4233.	3.9	25
80	Higher Levels of Multiple Paternities Increase Seedling Survival in the Long-Lived Tree Eucalyptus gracilis. PLoS ONE, 2014, 9, e90478.	2.5	25
81	Herbarium Collections and Photographic Images: Alternative Data Sources for Phenological Research. , 2010, , 425-461.		24
82	Leaf trait associations with environmental variation in the wideâ€ranging shrub <i>Dodonaea viscosa</i> subsp. <i>angustissima</i> (Sapindaceae). Austral Ecology, 2017, 42, 553-561.	1.5	24
83	Spatial modelling of species turnover identifies climate ecotones, climate change tipping points and vulnerable taxonomic groups. Ecography, 2013, 36, 1086-1096.	4.5	23
84	Targeted capture to assess neutral genomic variation in the narrow-leaf hopbush across a continental biodiversity refugium. Scientific Reports, 2017, 7, 41367.	3.3	23
85	DOMESTICATION OF INDIGENOUS FRUIT AND NUT TREES FOR AGROFORESTRY IN THE SOLOMON ISLANDS. Forests Trees and Livelihoods, 2010, 19, 269-287.	1.2	22
86	No consistent association between changes in genetic diversity and adaptive responses of Australian acacias in novel ranges. Evolutionary Ecology, 2012, 26, 1345-1360.	1.2	22
87	Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change. Austral Ecology, 2014, 39, 17-28.	1.5	22
88	AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Generation Computer Systems, 2016, 56, 537-549.	7.5	21
89	Standardized genetic diversityâ€life history correlates for improved genetic resource management of Neotropical trees. Diversity and Distributions, 2018, 24, 730-741.	4.1	21
90	Consequences of long- and short-term fragmentation on the genetic diversity and differentiation of a late successional rainforest conifer. Australian Journal of Botany, 2011, 59, 351.	0.6	20

#	Article	IF	CITATIONS
91	Forest reference emission level and carbon sequestration in Cambodia. Global Ecology and Conservation, 2016, 7, 82-96.	2.1	20
92	Publish openly but responsibly. Science, 2017, 357, 141-141.	12.6	20
93	Response to Comments on "The global tree restoration potential― Science, 2019, 366, .	12.6	20
94	Contrasting levels of connectivity and localised persistence characterise the latitudinal distribution of a wind-dispersed rainforest canopy tree. Genetica, 2014, 142, 251-264.	1.1	19
95	Multiâ€species distribution modelling highlights the Adelaide Geosyncline, South Australia, as an important continentalâ€scale aridâ€zone refugium. Austral Ecology, 2013, 38, 427-435.	1.5	18
96	Understanding population structure and historical demography in a conservation context: population genetics of an endangered fern. Diversity and Distributions, 2008, 14, 799-807.	4.1	17
97	Foundations for the future: A longâ€ŧerm plan for <scp>A</scp> ustralian ecosystem science. Austral Ecology, 2014, 39, 739-748.	1.5	17
98	Spatially designed revegetation—why the spatial arrangement of plants should be as important to revegetation as they are to natural systems. Restoration Ecology, 2018, 26, 446-455.	2.9	17
99	Plant and ant assemblages predicted to decouple under climate change. Diversity and Distributions, 2019, 25, 551-567.	4.1	17
100	Significant population genetic structure detected for a new and highly restricted species of Atriplex (Chenopodiaceae) from Western Australia, and implications for conservation management. Australian Journal of Botany, 2012, 60, 32.	0.6	16
101	Genetic Bottlenecks in Time and Space: Reconstructing Invasions from Contemporary and Historical Collections. PLoS ONE, 2014, 9, e106874.	2.5	16
102	A spatially predictive baseline for monitoring multivariate species occurrences and phylogenetic shifts in mediterranean southern Australia. Journal of Vegetation Science, 2014, 25, 338-348.	2.2	16
103	Population Genetics and Spatial Autocorrelation in an Unmanaged Stand of Quercus petraea in Denmark. Scandinavian Journal of Forest Research, 2003, 18, 295-304.	1.4	15
104	Can a seed bank provide demographic and genetic rescue in a declining population of the endangered shrub Acacia pinguifolia?. Conservation Genetics, 2011, 12, 669-678.	1.5	15
105	Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia. Diversity, 2016, 8, 5.	1.7	15
106	When macroecological transitions are a fiction of sampling: comparing herbarium records to plotâ€based species inventory data. Ecography, 2018, 41, 1864-1875.	4.5	15
107	The utility and limitations of chloroplast DNA analysis for identifying native British oak stands and for guiding replanting strategy. Forestry, 2004, 77, 335-347.	2.3	14
108	Genetic variation among <i>Helicoverpa armigera</i> populations as assessed by microsatellites: a cautionary tale about accurate allele scoring. Bulletin of Entomological Research, 2010, 100, 445-450.	1.0	14

#	Article	IF	CITATIONS
109	Restoration: 'Garden of Eden' unrealistic. Nature, 2016, 533, 469-469.	27.8	14
110	Mapping phylogenetic endemism in R using georeferenced branch extents. SoftwareX, 2015, 3-4, 22-26.	2.6	13
111	Assessment of carbon stocks of semi-evergreen forests in Cambodia. Global Ecology and Conservation, 2016, 5, 34-47.	2.1	13
112	Leaf morphology shift: new data and analysis support climate link. Biology Letters, 2013, 9, 20120860.	2.3	12
113	Applicability of chloroplast DNA barcodes for wood identification between <i>Santalum album</i> and its adulterants. Holzforschung, 2019, 73, 209-218.	1.9	12
114	Using the ancient past for establishing current threat in poorly inventoried regions. Biological Conservation, 2012, 147, 153-162.	4.1	11
115	Response to Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	12.6	11
116	Response to Comment on "The extent of forest in dryland biomes― Science, 2017, 358, 881-881.	12.6	11
117	Floristic and structural assessment of Australian rangeland vegetation with standardized plot-based surveys. PLoS ONE, 2018, 13, e0202073.	2.5	11
118	Systematic monitoring of heathy woodlands in a Mediterranean climate—a practical assessment of methods. Environmental Monitoring and Assessment, 2013, 185, 3959-3975.	2.7	10
119	Transcriptome sequencing, annotation and polymorphism detection in the hop bush, Dodonaea viscosa. BMC Genomics, 2015, 16, 803.	2.8	9
120	Hybrid swarms: catalysts for multiple evolutionary events in <i>Senecio</i> in the British Isles. Plant Ecology and Diversity, 2015, 8, 449-463.	2.4	9
121	Response to Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	12.6	9
122	Global change community ecology beyond speciesâ€sorting: a quantitative framework based on mediterraneanâ€biome examples. Global Ecology and Biogeography, 2014, 23, 1062-1072.	5.8	8
123	Population genetics of neotropical trees focus issue. Heredity, 2005, 95, 243-245.	2.6	6
124	Protecting evolutionary significant units for the remnant populations of Berchemiella wilsonii var. pubipetiolata (Rhamnaceae). Conservation Genetics, 2007, 8, 465-473.	1.5	6
125	Genetic analysis of the dry forest timber tree Sideroxylon capiri in Costa Rica using AFLP. Plant Systematics and Evolution, 2015, 301, 15-23.	0.9	6
126	Clumped planting arrangements improve seed production in a revegetated eucalypt woodland. Restoration Ecology, 2019, 27, 638-646.	2.9	6

ANDREW J LOWE

#	Article	IF	CITATIONS
127	Height differences in two eucalypt provenances with contrasting levels of aridity. Restoration Ecology, 2016, 24, 471-478.	2.9	5
128	Measuring genome-wide genetic variation to reassess subspecies classifications in Dodonaea viscosa (Sapindaceae). Australian Journal of Botany, 2018, 66, 287.	0.6	5
129	Isolation and characterization of polymorphic microsatellite loci for the invasive plant Cytisus scoparius. Molecular Ecology Notes, 2006, 7, 100-102.	1.7	4
130	Polymorphic Microsatellite Loci for Virola sebifera (Myristicaceae) Derived from Shotgun 454 Pyrosequencing. Applications in Plant Sciences, 2013, 1, 1200295.	2.1	3
131	Effective application of next-generation sequencing (NGS) approaches in systematics and population genetics: case studies in Eucalyptus and Acacia. Australian Systematic Botany, 2016, 29, 235.	0.9	3
132	Functional acclimation across microgeographic scales in Dodonaea viscosa. AoB PLANTS, 2018, 10, ply029.	2.3	3
133	AusPlots Rangelands Field Data Collection and Publication: Infrastructure for Ecological Monitoring. , 2014, , .		2
134	Rare genera differentiate urban green space soil bacterial communities in three cities across the world. Access Microbiology, 2022, 4, 000320.	0.5	2
135	Plants, position and pollination: Planting arrangement and pollination limitation in a revegetated eucalypt woodland. Ecological Management and Restoration, 2019, 20, 222-230.	1.5	1
136	Occasional hybridization between a native and invasive <i>Senecio</i> species in Australia is unlikely to contribute to invasive success. PeerJ, 2017, 5, e3630.	2.0	1
137	Interspecific hybridization and the origin of new plant taxa in Scotland. Botanical Journal of Scotland, 1997, 49, 247-256.	0.3	0
138	Isolation via 454 sequencing, and characterisation of microsatellites for Drymodes brunneopygia, southern scrub-robin (Aves: Petroicidae): a species at risk due to substantial habitat loss and climate change. Conservation Genetics Resources, 2012, 4, 331-333.	0.8	0