Richard John Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7725054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic carbohydrate-binding module-endogalacturonase chimeras increase catalytic efficiency and saccharification of lignocellulose residues. Biomass Conversion and Biorefinery, 2024, 14, 6369-6380.	4.6	2
2	Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application. Applied Biochemistry and Biotechnology, 2022, 194, 848-861.	2.9	4
3	Coâ€immobilization of multiple enzymes on ferromagnetic nanoparticles for the depolymerization of xyloglucan. Biofuels, Bioproducts and Biorefining, 2022, 16, 1682-1695.	3.7	3
4	Enhanced hydrolytic efficiency of an engineered CBM11-glucanase enzyme chimera against barley β-d-glucan extracts. Food Chemistry, 2021, 365, 130460.	8.2	5
5	A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Brazilian Journal of Microbiology, 2020, 51, 537-545.	2.0	16
6	A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification. Scientific Reports, 2020, 10, 6998.	3.3	19
7	Biochemical and kinetic characterization of the recombinant GH28 Stereum purpureum endopolygalacturonase and its biotechnological application. International Journal of Biological Macromolecules, 2019, 137, 469-474.	7.5	9
8	Immobilization of a \hat{l}^2 -glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expression and Purification, 2019, 160, 28-35.	1.3	30
9	Overexpression of a Cellobiose-Glucose-Halotolerant Endoglucanase from Scytalidium thermophilum. Applied Biochemistry and Biotechnology, 2018, 185, 316-333.	2.9	12
10	Glucose tolerant and glucose stimulated β-glucosidases – A review. Bioresource Technology, 2018, 267, 704-713.	9.6	101
11	The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis. International Journal of Biological Macromolecules, 2017, 97, 574-584.	7.5	12
12	Engineering the GH1 $\hat{1}^2$ -glucosidase from Humicola insolens: Insights on the stimulation of activity by glucose and xylose. PLoS ONE, 2017, 12, e0188254.	2.5	22
13	Lignocellulose binding of a Cel5A-RtCBM11 chimera with enhanced $\hat{1}^2$ -glucanase activity monitored by electron paramagnetic resonance. Biotechnology for Biofuels, 2017, 10, 269.	6.2	8
14	A xylose-stimulated xylanase–xylose binding protein chimera created by random nonhomologous recombination. Biotechnology for Biofuels, 2016, 9, 119.	6.2	29
15	GH53 Endo-Beta-1,4-Galactanase from a Newly Isolated Bacillus licheniformis CBMAI 1609 as an Enzymatic Cocktail Supplement for Biomass Saccharification. Applied Biochemistry and Biotechnology, 2016, 179, 415-426.	2.9	11
16	Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microbial Biotechnology, 2015, 8, 52-64.	4.2	64
17	Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnology Letters, 2015, 37, 1455-1462.	2.2	6
18	Insertion of a xylanase in xylose binding protein results in a xylose-stimulated xylanase. Biotechnology for Biofuels, 2015, 8, 118.	6.2	21

#	Article	IF	CITATIONS
19	A Neurospora crassa ÿ-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 131-140.	1.8	24
20	Gene cloning, expression and biochemical characterization of a glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 1-10.	1.8	33
21	Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1631-1639.	2.5	115
22	Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Protein Engineering, Design and Selection, 2014, 27, 255-262.	2.1	27
23	Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expression and Purification, 2014, 99, 43-49.	1.3	26
24	Engineering the Pattern of Protein Glycosylation Modulates the Thermostability of a GH11 Xylanase. Journal of Biological Chemistry, 2013, 288, 25522-25534.	3.4	59
25	Glucose and xylose stimulation of a β-glucosidase from the thermophilic fungus Humicola insolens: A kinetic and biophysical study. Journal of Molecular Catalysis B: Enzymatic, 2013, 94, 119-128.	1.8	46
26	Characterization of suramin binding sites on the human group IIA secreted phospholipase A2 by site-directed mutagenesis and molecular dynamics simulation. Archives of Biochemistry and Biophysics, 2012, 519, 17-22.	3.0	4
27	Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis. Journal of Molecular Modeling, 2012, 18, 1473-1479.	1.8	20
28	Biochemical and structural characterization of a β-1,3–1,4-glucanase from Bacillus subtilis 168. Process Biochemistry, 2011, 46, 1202-1206.	3.7	55
29	A practical teaching course in directed protein evolution using the green fluorescent protein as a model. Biochemistry and Molecular Biology Education, 2011, 39, 21-27.	1.2	8
30	Properties of a purified thermostable glucoamylase from Aspergillus niveus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1439-1446.	3.0	32
31	Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek, 2009, 96, 569-578.	1.7	21
32	Production, purification, crystallization and preliminary X-ray diffraction studies of the nucleoside diphosphate kinase b fromLeishmania major. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1116-1119.	0.7	3
33	Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: A molecular dynamics investigation. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1301-1306.	2.4	28
34	The association of Na,K-ATPase subunits studied by circular dichroism, surface tension and dilatational elasticity. Journal of Colloid and Interface Science, 2008, 325, 478-484.	9.4	12
35	An ultraviolet photoacoustic spectroscopy study of the interaction between Lys49–phospholipase A2 and amphiphilic molecules. Biochemical and Biophysical Research Communications, 2007, 353, 889-894.	2.1	3
36	Purification and Characterization of Two Xylanases From Alkalophilic and Thermophilic Bacillus licheniformis 77-2. Applied Biochemistry and Biotechnology, 2006, 129, 289-302.	2.9	17

RICHARD JOHN WARD

#	Article	IF	CITATIONS
37	Lipid Bilayer Stabilization of the Na,K-ATPase Reconstituted in DPPC/DPPE Liposomes. Cell Biochemistry and Biophysics, 2006, 44, 438-445.	1.8	12
38	Expression and characterization of HlyX hemolysin from Leptospira interrogans serovar Copenhageni: Potentiation of hemolytic activity by LipL32. Biochemical and Biophysical Research Communications, 2005, 333, 1341-1347.	2.1	25
39	Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet. European Biophysics Journal, 2004, 33, 335-43.	2.2	47
40	Activation of Ca2+-independent membrane-damaging activity in Lys49–phospholipase A2 promoted by amphiphilic molecules. Biochemical and Biophysical Research Communications, 2004, 322, 364-372.	2.1	10
41	The biological activity in mammals and insects of the nucleosidic fraction from the spider Parawixia bistriata. Toxicon, 2004, 43, 375-383.	1.6	17
42	Ontogenetic changes in Phoneutria nigriventer (Araneae, Ctenidae) spider venom. Toxicon, 2004, 44, 635-640.	1.6	29
43	Influence of enzyme conformational changes on catalytic activity investigated by circular dichroism spectroscopy. Biochemistry and Molecular Biology Education, 2003, 31, 329-332.	1.2	16
44	Isolation, purification, and physicochemical characterization of a d-galactose-binding lectin from seeds of Erythrina speciosa. Archives of Biochemistry and Biophysics, 2003, 410, 222-229.	3.0	49
45	Intersexual variations in the venom of the Brazilian â€~armed' spider Phoneutria nigriventer (Keyserling,) Tj E	TQ <u>q1</u> 10.	784314 rgBT 42
46	Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin. Biochimie, 2002, 84, 1035-1043.	2.6	23
47	Method for forming two-dimensional paracrystals of biological filaments on lipid monolayers. Journal of Electron Microscopy Technique, 1990, 14, 335-341.	1.1	17
48	Defective T-cell activation by Mycoplasma arthritidis mitogen is restored by interferon-Î ³ . Cellular Immunology, 1989, 120, 188-194.	3.0	8