

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7723373/publications.pdf Version: 2024-02-01

lie Vii

#	Article	IF	CITATIONS
1	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	6.7	635
2	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	11.2	491
3	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	21.0	249
4	Self atalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	14.9	217
5	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1800047.	21.0	212
6	Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12, 1380.	12.8	194
7	Systematic Study of Oxygen Evolution Activity and Stability on La _{1–<i>x</i>} Sr _{<i>x</i>} FeO _{3â^î} Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 11715-11721.	8.0	173
8	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	11.2	124
9	Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chemical Engineering Journal, 2020, 397, 125516.	12.7	121
10	A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. Journal of Materials Chemistry A, 2018, 6, 11113-11118.	10.3	120
11	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	12.8	119
12	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	6.7	117
13	3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1705380.	21.0	116
14	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	11.2	109
15	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources, 2017, 338, 26-33.	7.8	105
16	Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nature Communications, 2021, 12, 5260.	12.8	93
17	Activity and Stability of Ruddlesden–Popperâ€Type La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal. 2016. 22. 2719-2727.	3.3	90
18	Ultrathin MoS ₂ nanosheets homogenously embedded in aÂN,O-codoped carbon matrix for high-performance lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 4804-4812.	10.3	82

Jie Yu

#	Article	IF	CITATIONS
19	Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23307-23315.	10.3	77
20	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Materials & amp; Interfaces, 2018, 10, 34098-34107.	8.0	75
21	Monoclinic SrIrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	6.7	72
22	Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon, 2021, 173, 477-484.	10.3	68
23	Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials, 2021, 11, 2101937.	19.5	65
24	Large-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors. Scientific Reports, 2016, 6, 20021.	3.3	63
25	Vertical graphene growth on uniformly dispersed sub-nanoscale SiO _x /N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. Journal of Materials Chemistry A, 2020, 8, 3822-3833.	10.3	59
26	Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Advances, 2014, 4, 31300-31307.	3.6	58
27	Thermal charging of supercapacitors: a perspective. Sustainable Energy and Fuels, 2017, 1, 1457-1474.	4.9	58
28	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2018, 286, 47-54.	5.2	56
29	Bridging the Charge Accumulation and High Reaction Order for Highâ€Rate Oxygen Evolution and Long Stable Znâ€Air Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
30	Selfâ€catalyzed formation of strongly interconnected multiphase molybdenumâ€based composites for efficient hydrogen evolution. , 2022, 4, 77-87.		45
31	Activated carbon with micrometer-scale channels prepared from luffa sponge fibers and their application for supercapacitors. RSC Advances, 2014, 4, 35789-35796.	3.6	42
32	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	3.4	42
33	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	10.3	39
34	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2021, 13, 2799-2806.	8.0	38
35	High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes. Carbon, 2021, 176, 21-30.	10.3	35
36	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	11.3	28

Jie Yu

#	Article	IF	CITATIONS
37	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	5.7	28
38	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	12.7	28
39	A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. Materials Reports Energy, 2021, 1, 100024.	3.2	27
40	Tailoring structural properties of carbon via implanting optimal co nanoparticles in nâ€rich carbon cages toward highâ€efficiency oxygen electrocatalysis for rechargeable znâ€air batteries. , 2022, 4, 576-585.		27
41	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 2645-2653.	5.1	25
42	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 2018, 282, 324-330.	5.2	23
43	In Situ Anchoring Co–N–C Nanoparticles on Co ₄ N Nanosheets toward Ultrastable Flexible Selfâ€6upported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 2022, 18, e2105887.	10.0	22
44	Thermal effects in H2O and CO2 assisted direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 12459-12475.	7.1	21
45	A Flexible Supercapacitor with High True Performance. IScience, 2018, 9, 138-148.	4.1	17
46	Pressureâ€Induced Vapor Synthesis of Carbonâ€Encapsulated SiO _{<i>x</i>} /C Composite Spheres with Optimized Composition for Longâ€Life, Highâ€Rate, and Highâ€Arealâ€Capacity Lithiumâ€Ion Battery Anoc Energy Technology, 2019, 7, 1900084.	les.8	16
47	Vertical Graphene Nanosheet/Polyimide Composite Films for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 7461-7470.	5.0	16
48	Multifold Nanostructuring and Atomicâ€Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chemistry - A European Journal, 2018, 24, 13800-13806.	3.3	15
49	N,O-codoped 3D graphene fibers with densely arranged sharp edges as highly efficient electrocatalyst for oxygen reduction reaction. Journal of Materials Science, 2019, 54, 14495-14503.	3.7	15
50	In Situ Formation of SiO ₂ Nanospheres on Common Fabrics for Broadband Radiative Cooling. ACS Applied Nano Materials, 2021, 4, 11260-11268.	5.0	14
51	Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP. Journal of the European Ceramic Society, 2021, 41, 6859-6868.	5.7	14
52	Nitrogen-doped porous carbon fiber/vertical graphene as an efficient polysulfide conversion catalyst for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 690-698.	10.3	14
53	Nanoscopically and uniformly distributed SnO ₂ @TiO ₂ /C composite with highly mesoporous structure and bichemical bonds for enhanced lithium ion storage performances. Materials Advances, 2020, 1, 421-429.	5.4	13
54	Electrospun carbon nanofiber-based flexible films for electric heating elements with adjustable resistance, ultrafast heating rate, and high infrared emissivity. Journal of Materials Science, 2021, 56, 14542-14555.	3.7	13

Jie Yu

#	Article	IF	CITATIONS
55	Nano Carbon/Vertical Graphene/MnO ₂ Nanosheets Composite Particles for Highâ€Performance Supercapacitors. Energy Technology, 2022, 10, 2100884.	3.8	13
56	Substrate-orientation dependent epitaxial growth of highly ordered diamond nanosheet arrays by chemical vapor deposition. Nanoscale, 2018, 10, 2812-2819.	5.6	11
57	A novel route towards well-dispersed short nanofibers and nanoparticles via electrospinning. RSC Advances, 2016, 6, 30139-30147.	3.6	10
58	Vertically Aligned N-Doped Diamond/Graphite Hybrid Nanosheets Epitaxially Grown on B-Doped Diamond Films as Electrocatalysts for Oxygen Reduction Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 29866-29875.	8.0	10
59	Regulating the Interfacial Electron Density of La _{0.8} Sr _{0.2} Mn _{0.5} Co _{0.5} O ₃ /RuO _{<i>x</i><!--<br-->for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Applied Materials & amp: Interfaces. 2021. 13. 61098-61106.}	syb>	10
60	Solvothermal synthesis of a dendritic TiN _x O _y nanostructure for oxygen reduction reaction electrocatalysis. RSC Advances, 2015, 5, 106439-106443.	3.6	9
61	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Selfâ€Sacrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	5.3	9
62	3D Vertical Graphene@SiO x /Bâ€Doped Carbon Composite Microspheres for Highâ€Energy Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 2000351.	3.8	8
63	Atomicâ€Scale Laminated Structure of Oâ€Doped WS ₂ and Carbon Layers with Highly Enhanced Ion Transfer for Fastâ€Charging Lithiumâ€Ion Batteries. Small, 2022, 18, .	10.0	8
64	New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chemical Engineering Science, 2022, 259, 117816.	3.8	8
65	Vertical Graphene Nanosheets on Porous Microsilicon Particles for Anodes of Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 8205-8213.	5.0	6
66	Co ₄ N/Co ₂ C@rGO with Abundant Co–C and N–C Bonds as Highly Efficient Electrocatalyst for N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 1373-1382.	6.7	5
67	Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47623-47633.	8.0	4
68	Pressureâ€Induced Synthesis of Homogeneously Dispersed Sn/SnO ₂ /C Nanocomposites as Advanced Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901202.	3.8	3
69	Highly flexible and strong SiC fibre mats prepared by electrospinning and hot-drawing. Advances in Applied Ceramics, 2021, 120, 144-155.	1.1	2