
Adriane Mf Milagres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7723352/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 2008, 43, 124-129.	3.2	289
2	Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 1999, 37, 1-6.	1.6	263
3	Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 541-555.	3.0	155
4	A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1467-1475.	3.0	146
5	Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for Biofuels, 2011, 4, 55.	6.2	144
6	Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus. Applied Biochemistry and Biotechnology, 2010, 162, 1195-1205.	2.9	130
7	Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 2013, 102, 399-402.	10.1	128
8	Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 2017, 10, 176.	6.2	95
9	Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnology for Biofuels, 2011, 4, 7.	6.2	83
10	The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer's spent grain. Cellulose, 2008, 15, 711-721.	4.9	82
11	Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids. Industrial Crops and Products, 2018, 111, 722-730.	5.2	68
12	Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: Implications for brown-rot decay. International Biodeterioration and Biodegradation, 2009, 63, 478-483.	3.9	65
13	Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnology for Biofuels, 2017, 10, 296.	6.2	65
14	Influence of aeration and agitation rate on the xylanase activity from Penicillium janthinellum. Process Biochemistry, 1996, 31, 141-145.	3.7	54
15	The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fungi for degradation of Azure B. Enzyme and Microbial Technology, 2007, 42, 17-22.	3.2	52
16	Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance. Biotechnology for Biofuels, 2016, 9, 99.	6.2	51
17	Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnology Progress, 2011, 27, 395-401.	2.6	49
18	Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnology for Biofuels, 2016, 9, 110.	6.2	47

#	Article	IF	CITATIONS
19	Utilization of pineapple stem juice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide. Applied Energy, 2011, 88, 403-408.	10.1	44
20	Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 2006, 38, 436-442.	3.2	43
21	The enzymatic recalcitrance of internodes of sugar cane hybrids with contrasting lignin contents. Industrial Crops and Products, 2013, 51, 202-211.	5.2	43
22	Characterization of xylanase production by a local isolate of Penicillium janthinellum. Enzyme and Microbial Technology, 1993, 15, 248-253.	3.2	39
23	The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose, 2013, 20, 3165-3177.	4.9	39
24	Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and) Tj ETQq0 0 0 rgBT /C fractions. Biotechnology for Biofuels, 2014, 7, 153.)verlock 1 6.2	0 Tf 50 547 ⁻ 38
25	Interference of some aqueous two-phase system phase-forming components in protein determination by the Bradford method. Analytical Biochemistry, 2012, 421, 719-724.	2.4	37
26	Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. Journal of Chemical Technology and Biotechnology, 2006, 81, 413-419.	3.2	36
27	Degradation and decolorization of a biodegradable-resistant polymeric dye by chelator-mediated Fenton reactions. Chemosphere, 2006, 63, 1764-1772.	8.2	31
28	Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Separation and Purification Technology, 2014, 135, 183-189.	7.9	31
29	Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnology Letters, 2003, 25, 13-16.	2.2	29
30	Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biology Reviews, 2008, 22, 120-130.	4.7	29
31	The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill. Journal of Hazardous Materials, 2007, 141, 273-279.	12.4	28
32	Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae. Journal of Biotechnology, 2013, 168, 71-77.	3.8	28
33	Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textile fibers. Enzyme and Microbial Technology, 1994, 16, 627-632.	3.2	27
34	Fate of p-hydroxycinnamates and structural characteristics of residual hemicelluloses and lignin during alkaline-sulfite chemithermomechanical pretreatment of sugarcane bagasse. Biotechnology for Biofuels, 2018, 11, 153.	6.2	27
35	Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1089-1098.	3.0	26
36	Recovery of Peniophora cinerea laccase using aqueous two-phase systems composed by ethylene oxide/propylene oxide copolymer and potassium phosphate salts. Journal of Chromatography A, 2013, 1321, 14-20.	3.7	26

#	Article	IF	CITATIONS
37	A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Scientific Reports, 2017, 7, 3893.	3.3	26
38	Sucrose content, lignocellulose accumulation and in vitro digestibility of sugarcane internodes depicted in relation to internode maturation stage and Saccharum genotypes. Industrial Crops and Products, 2019, 139, 111543.	5.2	26
39	Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess and Biosystems Engineering, 2013, 36, 365-373.	3.4	25
40	Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. Journal of Biological Inorganic Chemistry, 2009, 14, 1253-1263.	2.6	24
41	Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 2015, 69, 60-67.	5.2	24
42	Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 2013, 56, 283-290.	2.2	23
43	Relevância de compostos de baixa massa molar produzidos por fungos e envolvidos na biodegradação da madeira. Quimica Nova, 2009, 32, 1586-1595.	0.3	21
44	Evaluation of different carbon sources for production of iron-reducing compounds by Wolfiporia cocos and Perenniporia medulla-panis. Process Biochemistry, 2006, 41, 887-891.	3.7	20
45	Enzymatic digestion of alkalineâ€sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step. Biotechnology Progress, 2013, 29, 890-895.	2.6	20
46	Sugarcane hybrids with original low lignin contents and high field productivity are useful toÂreach high glucose yields from bagasse. Biomass and Bioenergy, 2015, 75, 65-74.	5.7	20
47	Extraction of manganese peroxidase produced by Lentinula edodes. Bioresource Technology, 2008, 99, 2471-2475.	9.6	19
48	The Secretome of Phanerochaete chrysosporium and Trametes versicolor Grown in Microcrystalline Cellulose and Use of the Enzymes for Hydrolysis of Lignocellulosic Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 826.	4.1	18
49	Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse. Journal of Biotechnology, 2020, 321, 35-47.	3.8	18
50	Production of extracellular xylanases byPenicillium janthinellum. Applied Biochemistry and Biotechnology, 1994, 48, 107-116.	2.9	15
51	Biochemical properties of a β-mannanase and a β-xylanase produced by Ceriporiopsis subvermispora during biopulping conditions. International Biodeterioration and Biodegradation, 2009, 63, 191-195.	3.9	15
52	The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme and Microbial Technology, 2019, 130, 109370.	3.2	15
53	Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme and Microbial Technology, 2001, 28, 522-526.	3.2	14
54	Alkaline sulfite/anthraquinone pretreatment followed by disk refining of <i>Pinus radiata</i> and <i>Pinus caribaea</i> wood chips for biochemical ethanol production. Journal of Chemical Technology and Biotechnology, 2012, 87, 651-657.	3.2	14

#	Article	IF	CITATIONS
55	Heterologous expression and functional characterization of a GH10 endoxylanase from Aspergillus fumigatus var. niveus with potential biotechnological application. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00382.	4.4	14
56	Optimal recovery process conditions for manganese-peroxidase obtained by solid-state fermentation of eucalyptus residue using Lentinula edodes. Biomass and Bioenergy, 2011, 35, 4040-4044.	5.7	11
57	Evaluation of a simple alkaline pretreatment for screening of sugarcane hybrids according to their in vitro digestibility. Industrial Crops and Products, 2013, 51, 390-395.	5.2	11
58	An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Folia Microbiologica, 2018, 63, 467-478.	2.3	10
59	Efficient screening of process variables inPenicillium janthinellum fermentations. Biotechnology Letters, 1991, 13, 113-118.	2.2	8
60	Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials. , 2011, , 53-72.		8
61	Enzyme-aided xylan extraction from alkaline-sulfite pretreated sugarcane bagasse and its incorporation onto eucalyptus kraft pulps. Carbohydrate Research, 2020, 492, 108003.	2.3	8
62	Oligosaccharides from Lignocellulosic Biomass and Their Biological and Physicochemical Properties. Clean Energy Production Technologies, 2022, , 275-309.	0.5	7
63	Mapping of Cell Wall Components in Lignified Biomass as a Tool to Understand Recalcitrance. , 2014, , 173-202.		6
64	Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnology Progress, 2018, 34, 944-951.	2.6	6
65	The Effect of Xylan Removal on the High-Solid Enzymatic Hydrolysis of Sugarcane Bagasse. Bioenergy Research, 2022, 15, 1096-1106.	3.9	6
66	Clean-up and concentration of manganese peroxidases recovered during the biodegradation of Eucalyptus grandis by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 2008, 43, 193-198.	3.2	5
67	On-site produced and commercially available alkali-active xylanases compared for xylan extraction from sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101081.	3.1	5
68	Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite–Pretreated Sugarcane Bagasse. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4
69	High-solid enzymatic hydrolysis of sugarcane bagasse and ethanol production in repeated batch process using column reactors. 3 Biotech, 2021, 11, 432.	2.2	3
70	Identification of iron-regulated cellular proteins, Fe ³⁺ -reducing and -chelating compounds, in the white-rot fungus Perenniporia medulla-panis. Canadian Journal of Microbiology, 2007, 53, 1323-1329.	1.7	2
71	Characteristics of sugarcane bagasse fibers after xylan extraction and their high-solid hydrolysis cellulase-catalyzed. Biocatalysis and Agricultural Biotechnology, 2021, 36, 102123.	3.1	2
72	Simplified configuration for conversion of sugars from sugarcane bagasse into ethanol. Bioresource Technology Reports, 2021, 16, 100835.	2.7	2

#		IE	CITATIONS
#	Article	IF	CITATIONS
73	Anatomic and Ultrastructural Characteristics of Different Regions of Sugar Cane Internodes Which Affect Their Response to Alkaline-Sulfite Pretreatment and Material Recalcitrance. Energy & Fuels, 0, , .	5.1	1
74	An innovative concept for industrial sugarcane processing enhances polysaccharide utilization in first- and second-generation integrated biorefineries. Industrial Crops and Products, 2019, 141, 111801.	5.2	1
75	Hydrothermal Pretreatment as a Strategy for the Improvement of Sugarcane Bagasse Saccharification by Fungal Enzyme Blend. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	1
76	Uso de carvão ativado e resina de troca iônica para limpeza e concentração de enzimas em extratos de madeira biodegradada. Acta Scientiarum - Technology, 2010, 32, .	0.4	0