Armin Blesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7723348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Medicine, 2005, 11, 551-555.	30.7	979
2	Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Medicine, 2009, 15, 331-337.	30.7	880
3	A Neurovascular Niche for Neurogenesis after Stroke. Journal of Neuroscience, 2006, 26, 13007-13016.	3.6	806
4	Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 2012, 150, 1264-1273.	28.9	760
5	Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact?. Journal of Neuroscience Research, 2004, 77, 174-191.	2.9	403
6	Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science, 2015, 348, 347-352.	12.6	364
7	A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron, 2016, 89, 956-970.	8.1	314
8	Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends in Neurosciences, 2009, 32, 41-47.	8.6	251
9	Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO Journal, 2012, 31, 1350-1363.	7.8	241
10	Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34, 163-177.	4.4	236
11	Combined Intrinsic and Extrinsic Neuronal Mechanisms Facilitate Bridging Axonal Regeneration One Year after Spinal Cord Injury. Neuron, 2009, 64, 165-172.	8.1	197
12	Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neuroscience, 2009, 12, 1106-1113.	14.8	194
13	Neurotrophin-3 Gradients Established by Lentiviral Gene Delivery Promote Short-Distance Axonal Bridging beyond Cellular Grafts in the Injured Spinal Cord. Journal of Neuroscience, 2006, 26, 9713-9721.	3.6	167
14	Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. Journal of Comparative Neurology, 2003, 467, 403-417.	1.6	164
15	Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Research Bulletin, 2002, 57, 833-838.	3.0	162
16	Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials, 2010, 31, 6719-6729.	11.4	162
17	Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. Journal of Comparative Neurology, 2001, 436, 456-470.	1.6	146
18	NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Experimental Neurology, 2003, 181, 47-56.	4.1	136

#	Article	IF	CITATIONS
19	Local and Remote Growth Factor Effects after Primate Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 9728-9737.	3.6	130
20	Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7215-7220.	7.1	124
21	Motor Axonal Regeneration after Partial and Complete Spinal Cord Transection. Journal of Neuroscience, 2012, 32, 8208-8218.	3.6	122
22	Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomaterialia, 2015, 27, 140-150.	8.3	113
23	Intranigral Lentiviral Delivery of Dominant-negative TNF Attenuates Neurodegeneration and Behavioral Deficits in Hemiparkinsonian rats. Molecular Therapy, 2008, 16, 1572-1579.	8.2	106
24	Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. European Journal of Neuroscience, 2004, 20, 1695-1704.	2.6	102
25	IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Experimental Neurology, 2009, 215, 53-59.	4.1	102
26	Transient Growth Factor Delivery Sustains Regenerated Axons after Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 10535-10545.	3.6	100
27	GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. Journal of Comparative Neurology, 2001, 436, 399-410.	1.6	99
28	Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: Superiority to camp-mediated effects. Experimental Neurology, 2012, 235, 162-173.	4.1	97
29	Delayed Dominant-Negative TNF Gene Therapy Halts Progressive Loss of Nigral Dopaminergic Neurons in a Rat Model of Parkinson's Disease. Molecular Therapy, 2011, 19, 46-52.	8.2	94
30	Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia, 2017, 60, 167-180.	8.3	93
31	Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer. Methods, 2004, 33, 164-172.	3.8	87
32	Spontaneous and augmented growth of axons in the primate spinal cord: Effects of local injury and nerve growth factor-secreting cell grafts. Journal of Comparative Neurology, 2002, 449, 88-101.	1.6	86
33	Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. Journal of Neuroscience Research, 2010, 88, 1182-1192.	2.9	86
34	Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell and Tissue Research, 2012, 349, 27-37.	2.9	82
35	Transforming growth factor-Î ² -mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. , 1996, 65, 332-337.		79
36	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75

#	Article	lF	CITATIONS
37	Brain-Derived Neurotrophic Factor Gene Transfer With Adeno-Associated Viral and Lentiviral Vectors Prevents Rubrospinal Neuronal Atrophy and Stimulates Regeneration-Associated Gene Expression After Acute Cervical Spinal Cord Injury. Spine, 2007, 32, 1164-1173.	2.0	73
38	Functional Characterization of Ngf-Secreting Cell Grafts to the Acutely Injured Spinal Cord. Cell Transplantation, 1997, 6, 361-368.	2.5	71
39	Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Molecular Therapy, 2005, 11, 916-925.	8.2	67
40	Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Experimental Neurology, 2009, 215, 153-159.	4.1	67
41	Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Molecular and Cellular Neurosciences, 2004, 27, 190-201.	2.2	65
42	Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Progress in Brain Research, 2004, 146, 439-449.	1.4	61
43	Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain, 2016, 157, 687-697.	4.2	60
44	TNF: A Key Neuroinflammatory Mediator of Neurotoxicity and Neurodegeneration in Models of Parkinson's Disease. Advances in Experimental Medicine and Biology, 2011, 691, 539-540.	1.6	59
45	Partial Restoration of Cardiovascular Function by Embryonic Neural Stem Cell Grafts after Complete Spinal Cord Transection. Journal of Neuroscience, 2013, 33, 17138-17149.	3.6	57
46	Neural stem cells for spinal cord repair. Cell and Tissue Research, 2012, 349, 349-362.	2.9	53
47	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	4.1	52
48	Long-Term Viral Brain-Derived Neurotrophic Factor Delivery Promotes Spasticity in Rats with a Cervical Spinal Cord Hemisection. Frontiers in Neurology, 2013, 4, 187.	2.4	52
49	Chapter 32 Neurotrophin gene therapy in CNS models of trauma and degeneration. Progress in Brain Research, 1998, 117, 473-484.	1.4	51
50	Conserved 3′-Untranslated Region Sequences Direct Subcellular Localization of Chaperone Protein mRNAs in Neurons. Journal of Biological Chemistry, 2010, 285, 18025-18038.	3.4	50
51	Neurotrophic Factors in Neurodegeneration. Brain Pathology, 2006, 16, 295-303.	4.1	49
52	Loss of gene expression in lentivirus- and retrovirus-transduced neural progenitor cells is correlated to migration and differentiation in the adult spinal cord. Experimental Neurology, 2005, 195, 127-139.	4.1	48
53	Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Scientific Reports, 2017, 7, 12743.	3.3	42
54	Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Experimental Neurology, 2012, 235, 62-69.	4.1	41

#	Article	IF	CITATIONS
55	Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Experimental Neurology, 2018, 306, 250-259.	4.1	41
56	Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Experimental Neurology, 2018, 300, 247-258.	4.1	39
57	Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor. Journal of Neuroscience Research, 2000, 59, 402-409.	2.9	36
58	Axonal transport of neural membrane protein 35 mRNA increases axon growth. Journal of Cell Science, 2013, 126, 90-102.	2.0	36
59	Gene Therapy and Cell Transplantation for Alzheimer's Disease and Spinal Cord Injury. Yonsei Medical Journal, 2004, 45, S28.	2.2	35
60	Neural Stem Cell Dissemination after Grafting to CNS Injury Sites. Cell, 2014, 156, 388-389.	28.9	35
61	GDNF-Transduced Schwann Cell Grafts Enhance Regeneration of Erectile Nerves. European Urology, 2008, 54, 1179-1187.	1.9	34
62	Axonal Amphoterin mRNA Is Regulated by Translational Control and Enhances Axon Outgrowth. Journal of Neuroscience, 2015, 35, 5693-5706.	3.6	32
63	Neuropathic pain after spinal cord injury: the impact of sensorimotor activity. Pain, 2017, 158, 371-376.	4.2	30
64	Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. Journal of Neurotrauma, 2018, 35, 2222-2238.	3.4	30
65	Chapter 31 Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Progress in Brain Research, 2002, 137, 415-423.	1.4	28
66	Dependence of Regenerated Sensory Axons on Continuous Neurotrophin-3 Delivery. Journal of Neuroscience, 2012, 32, 13206-13220.	3.6	28
67	Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy, 2012, 14, 1041-1053.	0.7	28
68	Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells, 2021, 10, 3296.	4.1	28
69	Limited Functional Effects of Subacute Syngeneic Bone Marrow Stromal Cell Transplantation after Rat Spinal Cord Contusion Injury. Cell Transplantation, 2016, 25, 125-139.	2.5	25
70	Gene therapy, neurotrophic factors and spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 563-574.	1.8	22
71	Anisotropic Alginate Hydrogels Promote Axonal Growth across Chronic Spinal Cord Transections after Scar Removal. ACS Biomaterials Science and Engineering, 2020, 6, 2274-2286.	5.2	21
72	Peptides and Astroglia Improve the Regenerative Capacity of Alginate Gels in the Injured Spinal Cord. Tissue Engineering - Part A, 2019, 25, 522-537.	3.1	19

6

#	Article	IF	CITATIONS
73	Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord. Stem Cell Research, 2013, 11, 758-771.	0.7	18
74	Characterization of supraspinal vasomotor pathways and autonomic dysreflexia after spinal cord injury in F344 rats. Autonomic Neuroscience: Basic and Clinical, 2013, 176, 54-63.	2.8	17
75	Cortical electrical stimulation in female rats with a cervical spinal cord injury to promote axonal outgrowth. Journal of Neuroscience Research, 2018, 96, 852-862.	2.9	17
76	Thoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain. PLoS ONE, 2014, 9, e102896.	2.5	17
77	Nerve growth factor gene therapy for alzheimer's disease. Journal of Molecular Neuroscience, 2002, 19, 207-207.	2.3	15
78	A novel inducible tyrosine kinase receptor to regulate signal transduction and neurite outgrowth. Journal of Neuroscience Research, 2009, 87, 2624-2631.	2.9	14
79	Neural stem cells in models of spinal cord injury. Experimental Neurology, 2014, 261, 494-500.	4.1	13
80	AngleJ: A new tool for the automated measurement of neurite growth orientation in tissue sections. Journal of Neuroscience Methods, 2015, 251, 143-150.	2.5	13
81	New strategies in neural repair. Progress in Brain Research, 2002, 138, 401-409.	1.4	12
82	Transforming Growth Factor-β-Mediated Regulation of Human Peripheral Blood Mononuclear Cell Proliferation as Detected with Phosphorothioate Antisense Oligodeoxynucleotides. Cellular Immunology, 1995, 165, 125-133.	3.0	11
83	Nucleus hears axon's pain. Nature Medicine, 2004, 10, 236-237.	30.7	10
84	Therapeutic potential of nervous system growth factors for neurodegenerative disease. Expert Review of Neurotherapeutics, 2002, 2, 89-96.	2.8	9
85	Cloning and Characterization of the Expression Pattern of a Novel Splice Product MIA (Splice) of Malignant Melanoma-derived Growth-inhibiting Activity (MIAY CD-RAP). Journal of Investigative Dermatology, 2002, 119, 562-569.	0.7	9
86	Optimization of adult sensory neuron electroporation to study mechanisms of neurite growth. Frontiers in Molecular Neuroscience, 2012, 5, 11.	2.9	8
87	Targeted tissue engineering: hydrogels with linear capillary channels for axonal regeneration after spinal cord injury. Neural Regeneration Research, 2018, 13, 641.	3.0	7
88	Neurotrophin gene therapy for Alzheimer's disease. Future Neurology, 2006, 1, 179-187.	0.5	6
89	Human ESC-Derived Interneurons Improve Major Consequences of Spinal Cord Injury. Cell Stem Cell, 2016, 19, 423-424.	11.1	6

90 Spinal Cord Regeneration. , 1999, , 605-629.

#	Article	IF	CITATIONS
91	Melanoma-inhibiting activity (MIA/CD-RAP) is expressed in a variety of malignant tumors of mainly neuroectodermal origin. Anticancer Research, 2002, 22, 577-83.	1.1	5
92	Murine and HIV-Based Retroviral Vectors for In Vitro and In Vivo Gene Transfer. , 2006, 129, 241-254.		4
93	Effects of cavernous nerve reconstruction on expression of nitric oxide synthase isoforms in rats. BJU International, 2010, 106, 1726-1731.	2.5	3
94	A Radio-telemetric System to Monitor Cardiovascular Function in Rats with Spinal Cord Transection and Embryonic Neural Stem Cell Grafts. Journal of Visualized Experiments, 2014, , e51914.	0.3	1
95	Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. , 1996, 65, 332.		1
96	Neuroregeneration., 2017,, 585-619.		1
97	Perspektiven für regenerative Strategien nach Querschnittsverletzung. Aktuelle Neurologie, 2002, 29, 223-228.	0.1	Ο
98	Neurotrophic Factors and Gene Therapy in Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2000, 6, 42-51.	1.8	0
99	NEUROTROPHIC FACTORS IN ALZHEIMER'S DISEASE. , 2008, , 201-221.		0
100	Gene Therapy for Spinal Cord Injury. , 2016, , 131-153.		0