Bartosz A Grzybowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/772075/publications.pdf Version: 2024-02-01

		6613	5539
299	29,531	79	163
papers	citations	h-index	g-index
329	329	329	30091
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Assembly at All Scales. Science, 2002, 295, 2418-2421.	12.6	6,431
2	Nanoscale Forces and Their Uses in Selfâ€Assembly. Small, 2009, 5, 1600-1630.	10.0	1,362
3	Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice. Science, 2006, 312, 420-424.	12.6	841
4	Great expectations: can artificial molecular machines deliver on their promise?. Chemical Society Reviews, 2012, 41, 19-30.	38.1	796
5	The Mosaic of Surface Charge in Contact Electrification. Science, 2011, 333, 308-312.	12.6	667
6	Nanoparticles functionalised with reversible molecular and supramolecular switches. Chemical Society Reviews, 2010, 39, 2203.	38.1	484
7	Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature, 2000, 405, 1033-1036.	27.8	481
8	Swimming bacteria power microscopic gears. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 969-974.	7.1	458
9	Computerâ€Assisted Synthetic Planning: The End of the Beginning. Angewandte Chemie - International Edition, 2016, 55, 5904-5937.	13.8	395
10	Self-assembly: from crystals to cells. Soft Matter, 2009, 5, 1110.	2.7	385
11	Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10305-10309.	7.1	384
12	The nanotechnology of life-inspired systems. Nature Nanotechnology, 2016, 11, 585-592.	31.5	348
13	Writing Selfâ€Erasing Images using Metastable Nanoparticle "Inksâ€: Angewandte Chemie - International Edition, 2009, 48, 7035-7039.	13.8	344
14	Directing cell motions on micropatterned ratchets. Nature Physics, 2009, 5, 606-612.	16.7	281
15	Plastic and Moldable Metals by Self-Assembly of Sticky Nanoparticle Aggregates. Science, 2007, 316, 261-264.	12.6	270
16	Principles and Implementations of Dissipative (Dynamic) Self-Assembly. Journal of Physical Chemistry B, 2006, 110, 2482-2496.	2.6	268
17	Maze Solving by Chemotactic Droplets. Journal of the American Chemical Society, 2010, 132, 1198-1199.	13.7	254
18	Janus Particle Synthesis, Assembly, and Application. Langmuir, 2017, 33, 6964-6977.	3.5	251

#	Article	IF	CITATIONS
19	Adsorption of Proteins to Hydrophobic Sites on Mixed Self-Assembled Monolayersâ€. Langmuir, 2003, 19, 1861-1872.	3.5	243
20	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	38.1	241
21	Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature, 2009, 460, 371-375.	27.8	239
22	Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid and Interface Science, 2011, 16, 135-148.	7.4	235
23	Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory. CheM, 2018, 4, 522-532.	11.7	227
24	Electrostatics at the nanoscale. Nanoscale, 2011, 3, 1316-1344.	5.6	222
25	Electrostatic self-assembly of macroscopic crystals using contact electrification. Nature Materials, 2003, 2, 241-245.	27.5	221
26	Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces:  Synthesis Using the "Capillary Bond― Journal of the American Chemical Society, 1999, 121, 5373-5391.	13.7	212
27	Photoswitchable Catalysis Mediated by Dynamic Aggregation of Nanoparticles. Journal of the American Chemical Society, 2010, 132, 11018-11020.	13.7	208
28	How and Why Nanoparticle's Curvature Regulates the Apparent p <i>K</i> _a of the Coating Ligands. Journal of the American Chemical Society, 2011, 133, 2192-2197.	13.7	208
29	Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nature Materials, 2012, 11, 978-985.	27.5	206
30	Micro- and nanotechnology via reaction–diffusion. Soft Matter, 2005, 1, 114.	2.7	196
31	Chromatography in a Single Metalâ^'Organic Framework (MOF) Crystal. Journal of the American Chemical Society, 2010, 132, 16358-16361.	13.7	192
32	Applications, Properties and Synthesis of ω-Functionalized n-Alkanethiols and Disulfides - the Building Blocks of Self-Assembled Monolayers. Current Organic Chemistry, 2004, 8, 1763-1797.	1.6	177
33	Colloidal assembly directed by virtual magnetic moulds. Nature, 2013, 503, 99-103.	27.8	177
34	Contact Electrification between Identical Materials. Angewandte Chemie - International Edition, 2010, 49, 946-949.	13.8	168
35	Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nature Nanotechnology, 2020, 15, 331-341.	31.5	167
36	Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature, 2018, 553, 313-318.	27.8	162

#	Article	IF	CITATIONS
37	Synthesis, Shape Control, and Optical Properties of Hybrid Au/Fe ₃ O ₄ "Nanoflowers― Small, 2008, 4, 1635-1639.	10.0	160
38	Reactionâ€Diffusion Systems in Intracellular Molecular Transport and Control. Angewandte Chemie - International Edition, 2010, 49, 4170-4198.	13.8	155
39	Material Transfer and Polarity Reversal in Contact Charging. Angewandte Chemie - International Edition, 2012, 51, 4843-4847.	13.8	154
40	Control of Surface Charges by Radicals as a Principle of Antistatic Polymers Protecting Electronic Circuitry. Science, 2013, 341, 1368-1371.	12.6	148
41	Active colloids with collective mobility status and research opportunities. Chemical Society Reviews, 2017, 46, 5551-5569.	38.1	145
42	Organic Switches for Surfaces and Devices. Advanced Materials, 2013, 25, 331-348.	21.0	142
43	Nanoparticle Core/Shell Architectures within MOF Crystals Synthesized by Reaction Diffusion. Angewandte Chemie - International Edition, 2012, 51, 7435-7439.	13.8	141
44	Synthesis of Stable, Low-Dispersity Copper Nanoparticles and Nanorods and Their Antifungal and Catalytic Properties. Journal of Physical Chemistry C, 2010, 114, 15612-15616.	3.1	137
45	Storage of Electrical Information in Metal–Organicâ€Framework Memristors. Angewandte Chemie - International Edition, 2014, 53, 4437-4441.	13.8	137
46	Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotechnology, 2013, 8, 676-681.	31.5	136
47	Computational planning of the synthesis of complex natural products. Nature, 2020, 588, 83-88.	27.8	131
48	Biospecific Binding of Carbonic Anhydrase to Mixed SAMs Presenting Benzenesulfonamide Ligands:Â A Model System for Studying Lateral Steric Effects. Langmuir, 1999, 15, 7186-7198.	3.5	130
49	The 'wired' universe of organic chemistry. Nature Chemistry, 2009, 1, 31-36.	13.6	130
50	Fabrication using â€~programmed' reactions. Materials Today, 2007, 10, 38-46.	14.2	122
51	Nanoparticle Oscillations and Fronts. Angewandte Chemie - International Edition, 2010, 49, 8616-8619.	13.8	120
52	Metal Nanoparticles Functionalized with Molecular and Supramolecular Switches. Journal of the American Chemical Society, 2009, 131, 4233-4235.	13.7	119
53	Architecture and Evolution of Organic Chemistry. Angewandte Chemie - International Edition, 2005, 44, 7263-7269.	13.8	115
54	Dynamic hook-and-eye nanoparticle sponges. Nature Chemistry, 2009, 1, 733-738.	13.6	114

#	Article	IF	CITATIONS
55	Selfâ€Assembling Films of Covalent Organic Frameworks Enable Longâ€Term, Efficient Cycling of Zincâ€lon Batteries. Advanced Materials, 2021, 33, e2101726.	21.0	114
56	What Really Drives Chemical Reactions on Contact Charged Surfaces?. Journal of the American Chemical Society, 2012, 134, 7223-7226.	13.7	111
57	A Tool for Studying Contact Electrification in Systems Comprising Metals and Insulating Polymers. Analytical Chemistry, 2003, 75, 4859-4867.	6.5	109
58	Ionic-like Behavior of Oppositely Charged Nanoparticles. Journal of the American Chemical Society, 2006, 128, 15046-15047.	13.7	107
59	Parallel Optimization of Synthetic Pathways within the Network of Organic Chemistry. Angewandte Chemie - International Edition, 2012, 51, 7928-7932.	13.8	107
60	Effects of Surface Modification and Moisture on the Rates of Charge Transfer between Metals and Organic Materials. Journal of Physical Chemistry B, 2004, 108, 20296-20302.	2.6	104
61	Chemoelectronic circuits based on metal nanoparticles. Nature Nanotechnology, 2016, 11, 603-608.	31.5	103
62	Prediction of Major Regioâ€, Siteâ€, and Diastereoisomers in Diels–Alder Reactions by Using Machineâ€Learning: The Importance of Physically Meaningful Descriptors. Angewandte Chemie - International Edition, 2019, 58, 4515-4519.	13.8	103
63	Is Water Necessary for Contact Electrification?. Angewandte Chemie - International Edition, 2011, 50, 6766-6770.	13.8	101
64	Generation of Micrometer-Sized Patterns for Microanalytical Applications Using a Laser Direct-Write Method and Microcontact Printing. Analytical Chemistry, 1998, 70, 4645-4652.	6.5	100
65	Dynamic Self-Assembly in Ensembles of Camphor Boats. Journal of Physical Chemistry B, 2008, 112, 10848-10853.	2.6	99
66	Selfâ€Assembly of Nanotriangle Superlattices Facilitated by Repulsive Electrostatic Interactions. Angewandte Chemie - International Edition, 2010, 49, 6760-6763.	13.8	99
67	Controlled pH Stability and Adjustable Cellular Uptake of Mixed-Charge Nanoparticles. Journal of the American Chemical Society, 2013, 135, 6392-6395.	13.7	99
68	Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules. Physical Review E, 2001, 64, 011603.	2.1	95
69	Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?. Scientific Reports, 2017, 7, 3582.	3.3	95
70	Electrostatic Aggregation and Formation of Coreâ^'Shell Suprastructures in Binary Mixtures of Charged Metal Nanoparticles. Nano Letters, 2006, 6, 1896-1903.	9.1	92
71	Combinatorial computational method gives new picomolar ligands for a known enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1270-1273.	7.1	91
72	Engineering Gram Selectivity of Mixedâ€Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angewandte Chemie - International Edition, 2016, 55, 8610-8614.	13.8	88

#	Article	IF	CITATIONS
73	Dynamic Aggregation of Chiral Spinners. Science, 2002, 296, 718-721.	12.6	86
74	Multicolour micropatterning of thin films of dry gels. Nature Materials, 2004, 3, 729-735.	27.5	86
75	Tunneling Electrical Connection to the Interior of Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 8169-8175.	13.7	86
76	Rewiring Chemistry: Algorithmic Discovery and Experimental Validation of Oneâ€Pot Reactions in the Network of Organic Chemistry. Angewandte Chemie - International Edition, 2012, 51, 7922-7927.	13.8	85
77	The Core and Most Useful Molecules in Organic Chemistry. Angewandte Chemie - International Edition, 2006, 45, 5348-5354.	13.8	83
78	Assembly of Polygonal Nanoparticle Clusters Directed by Reversible Noncovalent Bonding Interactions. Nano Letters, 2009, 9, 3185-3190.	9.1	82
79	Modeling of Menisci and Capillary Forces from the Millimeter to the Micrometer Size Range. Journal of Physical Chemistry B, 2001, 105, 404-412.	2.6	81
80	Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science, 2020, 369, .	12.6	79
81	Liesegang Rings Engineered from Charged Nanoparticles. Journal of the American Chemical Society, 2010, 132, 58-60.	13.7	78
82	Mechanoradicals Created in "Polymeric Sponges―Drive Reactions in Aqueous Media. Angewandte Chemie - International Edition, 2012, 51, 3596-3600.	13.8	78
83	Molecular dynamics imaging in micropatterned living cells. Nature Methods, 2005, 2, 739-741.	19.0	74
84	Self-assembly of polymeric microspheres of complex internal structures. Nature Materials, 2004, 4, 93-97.	27.5	73
85	Retrieving and converting energy from polymers: deployable technologies and emerging concepts. Energy and Environmental Science, 2013, 6, 3467.	30.8	73
86	Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nature Communications, 2018, 9, 4539.	12.8	73
87	Bridging Interactions and Selective Nanoparticle Aggregation Mediated by Monovalent Cations. ACS Nano, 2011, 5, 530-536.	14.6	71
88	Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature, 2020, 579, 73-79.	27.8	70
89	Wet Stamping of Microscale Periodic Precipitation Patterns. Journal of Physical Chemistry B, 2005, 109, 2774-2778.	2.6	69
90	The Chemopreventive Bioflavonoid Apigenin Inhibits Prostate Cancer Cell Motility through the Focal Adhesion Kinase/Src Signaling Mechanism. Cancer Prevention Research, 2009, 2, 830-841.	1.5	69

#	Article	IF	CITATIONS
91	Tactic, reactive, and functional droplets outside of equilibrium. Chemical Society Reviews, 2016, 45, 4766-4796.	38.1	69
92	Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 276-279.	13.8	68
93	Slit Tubes for Semisoft Pneumatic Actuators. Advanced Materials, 2018, 30, 1704446.	21.0	68
94	Controlling the Growth of "lonic―Nanoparticle Supracrystals. Nano Letters, 2007, 7, 1018-1021.	9.1	66
95	Dynamics of self assembly of magnetized disks rotating at the liquid-air interface. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4147-4151.	7.1	65
96	A Metal–Organic Framework Stabilizes an Occluded Photocatalyst. Chemistry - A European Journal, 2013, 19, 11194-11198.	3.3	65
97	Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society, 2022, 144, 4819-4827.	13.7	64
98	Organic Chemistry as a Language and the Implications of Chemical Linguistics for Structural and Retrosynthetic Analyses. Angewandte Chemie - International Edition, 2014, 53, 8108-8112.	13.8	63
99	Studying the Thermodynamics of Surface Reactions on Nanoparticles by Electrostatic Titrations. Journal of the American Chemical Society, 2007, 129, 6664-6665.	13.7	62
100	Vesicle-to-Micelle Oscillations and Spatial Patterns. Langmuir, 2010, 26, 13770-13772.	3.5	62
101	Synergy Between Expert and Machineâ€Learning Approaches Allows for Improved Retrosynthetic Planning. Angewandte Chemie - International Edition, 2020, 59, 725-730.	13.8	62
102	Molecular-Mechanical Switching at the Nanoparticleâ^'Solvent Interface: Practice and Theory. Journal of the American Chemical Society, 2010, 132, 4310-4320.	13.7	61
103	Rapid and Accurate Prediction of p <i>K</i> _a Values of C–H Acids Using Graph Convolutional Neural Networks. Journal of the American Chemical Society, 2019, 141, 17142-17149.	13.7	61
104	"Nanoions― Fundamental Properties and Analytical Applications of Charged Nanoparticles. ChemPhysChem, 2007, 8, 2171-2176.	2.1	59
105	Responsive and Nonequilibrium Nanomaterials. Journal of Physical Chemistry Letters, 2012, 3, 2103-2111.	4.6	59
106	Charged nanoparticles as supramolecular surfactants for controlling the growth and stabilityÂofÂmicrocrystals. Nature Materials, 2012, 11, 227-232.	27.5	59
107	Plasmoelectronics: Coupling Plasmonic Excitation with Electron Flow. Langmuir, 2012, 28, 9093-9102.	3.5	58
108	Making Use of Bond Strength and Steric Hindrance in Nanoscale "Synthesis― Angewandte Chemie - International Edition, 2009, 48, 9477-9480.	13.8	57

#	Article	IF	CITATIONS
109	Automatic mapping of atoms across both simple and complex chemical reactions. Nature Communications, 2019, 10, 1434.	12.8	57
110	Swarming in Shallow Waters. Journal of Physical Chemistry Letters, 2011, 2, 770-774.	4.6	56
111	Enhanced photocatalytic activity of hybrid Fe2O3–Pd nanoparticulate catalysts. Chemical Science, 2012, 3, 1090.	7.4	55
112	From Knowledge-Based Potentials to Combinatorial Lead Design in Silico. Accounts of Chemical Research, 2002, 35, 261-269.	15.6	53
113	Chematica: A Story of Computer Code That Started to Think like a Chemist. CheM, 2018, 4, 390-398.	11.7	53
114	Electrostatically "Patchy―Coatings via Cooperative Adsorption of Charged Nanoparticles. Journal of the American Chemical Society, 2007, 129, 15623-15630.	13.7	51
115	Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature. Journal of Physical Chemistry Letters, 2010, 1, 1428-1431.	4.6	51
116	Reactive Surface Micropatterning by Wet Stamping. Langmuir, 2005, 21, 2637-2640.	3.5	49
117	Selfâ€Division of Macroscopic Droplets: Partitioning of Nanosized Cargo into Nanoscale Micelles. Angewandte Chemie - International Edition, 2010, 49, 6756-6759.	13.8	49
118	Precision Assembly of Oppositely and Like-Charged Nanoobjects Mediated by Charge-Induced Dipole Interactions. Nano Letters, 2010, 10, 2275-2280.	9.1	49
119	Dynamic internal gradients control and direct electric currents within nanostructured materials. Nature Nanotechnology, 2011, 6, 740-746.	31.5	48
120	Dynamic self-assembly of photo-switchable nanoparticles. Soft Matter, 2012, 8, 227-234.	2.7	48
121	Dynamic Self-Assembly of Rings of Charged Metallic Spheres. Physical Review Letters, 2003, 90, 083903.	7.8	47
122	Bulk Synthesis and Surface Patterning of Nanoporous Metals and Alloys from Supraspherical Nanoparticle Aggregates. Advanced Functional Materials, 2008, 18, 2763-2769.	14.9	46
123	Antibacterial Nanoparticle Monolayers Prepared on Chemically Inert Surfaces by Cooperative Electrostatic Adsorption (CELA). ACS Applied Materials & Interfaces, 2010, 2, 1206-1210.	8.0	46
124	Controlling the Properties of Self-Assembled Monolayers by Substrate Curvatureâ€. Langmuir, 2011, 27, 1246-1250.	3.5	46
125	Kinetics of Contact Electrification between Metals and Polymers. Journal of Physical Chemistry B, 2005, 109, 20511-20515.	2.6	45
126	Nano- and Microscopic Surface Wrinkles of Linearly Increasing Heights Prepared by Periodic Precipitation. Journal of the American Chemical Society, 2005, 127, 17803-17807.	13.7	44

#	Article	IF	CITATIONS
127	Synthesis of Heterodimeric Sphere–Prism Nanostructures via Metastable Gold Supraspheres. Angewandte Chemie - International Edition, 2007, 46, 8363-8367.	13.8	44
128	Complexity and dynamic self-assembly. Chemical Engineering Science, 2004, 59, 1667-1676.	3.8	43
129	One-Step Multilevel Microfabrication by Reactionâ^'Diffusion. Langmuir, 2005, 21, 418-423.	3.5	43
130	Largeâ€Area, Freestanding MOF Films of Planar, Curvilinear, or Micropatterned Topographies. Angewandte Chemie - International Edition, 2017, 56, 127-132.	13.8	43
131	Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media. Review of Scientific Instruments, 1999, 70, 2031-2037.	1.3	42
132	Self-assembling fluidic machines. Applied Physics Letters, 2004, 84, 1798-1800.	3.3	42
133	Selection of cost-effective yet chemically diverse pathways from the networks of computer-generated retrosynthetic plans. Chemical Science, 2019, 10, 4640-4651.	7.4	41
134	Development of a Knowledge-Based Potential for Crystals of Small Organic Molecules:Â Calculation of Energy Surfaces for C=0·A·Â·Hâ^'N Hydrogen Bonds. Journal of Physical Chemistry B, 2000, 104, 7293-7298.	2.6	39
135	Mechanochemical Activation and Patterning of an Adhesive Surface toward Nanoparticle Deposition. Journal of the American Chemical Society, 2015, 137, 1726-1729.	13.7	39
136	Navigating around Patented Routes by Preserving Specific Motifs along Computer-Planned Retrosynthetic Pathways. CheM, 2019, 5, 460-473.	11.7	39
137	Absorption of Water by Thin, Ionic Films of Gelatin. Langmuir, 2004, 20, 3513-3516.	3.5	38
138	Nanoparticle Supracrystals and Layered Supracrystals as Chemical Amplifiers. Angewandte Chemie - International Edition, 2010, 49, 5737-5741.	13.8	38
139	Bistability and Hysteresis During Aggregation of Charged Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 1459-1462.	4.6	38
140	Transport into Metal–Organic Frameworks from Solution Is Not Purely Diffusive. Angewandte Chemie - International Edition, 2012, 51, 2662-2666.	13.8	38
141	Self-Assembly of Gears at a Fluid/Air Interface. Journal of the American Chemical Society, 2003, 125, 7948-7958.	13.7	36
142	Cutting into Solids with Micropatterned Gels. Advanced Materials, 2005, 17, 1361-1365.	21.0	36
143	Vortex flows impart chirality-specific lift forces. Nature Communications, 2015, 6, 5640.	12.8	36
144	Tweezing of Magnetic and Nonâ€Magnetic Objects with Magnetic Fields. Advanced Materials, 2017, 29, 1603516.	21.0	36

9

#	ARTICLE	IF	CITATIONS
145	Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing. Sensors and Actuators A: Physical, 2000, 86, 81-85.	4.1	35
146	Cell motility on micropatterned treadmills and tracks. Soft Matter, 2007, 3, 672.	2.7	35
147	Modeling of Electrodynamic Interactions between Metal Nanoparticles Aggregated by Electrostatic Interactions into Closely-Packed Clusters. Journal of Physical Chemistry C, 2007, 111, 11816-11822.	3.1	35
148	Computergestützte Syntheseplanung: Das Ende vom Anfang. Angewandte Chemie, 2016, 128, 6004-6040.	2.0	35
149	Mechanism of the Cooperative Adsorption of Oppositely Charged Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 3799-3803.	2.5	34
150	Tunable Photoluminescence across the Visible Spectrum and Photocatalytic Activity of Mixed-Valence Rhenium Oxide Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15088-15093.	13.7	33
151	Algorithmic Discovery of Tactical Combinations for Advanced Organic Syntheses. CheM, 2020, 6, 280-293.	11.7	32
152	Color Micro- and Nanopatterning with Counter-Propagating Reaction-Diffusion Fronts. Advanced Materials, 2004, 16, 1912-1917.	21.0	31
153	Minimal-uncertainty prediction of general drug-likeness based on Bayesian neural networks. Nature Machine Intelligence, 2020, 2, 457-465.	16.0	31
154	Micro―and Nanoprinting into Solids Using Reactionâ€Điffusion Etching and Hydrogel Stamps. Small, 2009, 5, 22-27.	10.0	30
155	Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials, 2011, 32, 5092-5099.	11.4	30
156	The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry. Reaction Chemistry and Engineering, 2019, 4, 1506-1521.	3.7	30
157	Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nature Physics, 2019, 15, 706-713.	16.7	30
158	Computer-designed repurposing of chemical wastes into drugs. Nature, 2022, 604, 668-676.	27.8	30
159	Three-Dimensional Dynamic Self-Assembly of Spinning Magnetic Disks:  Vortex Crystals. Journal of Physical Chemistry B, 2002, 106, 1188-1194.	2.6	29
160	Theoretical basis for the stabilization of charges by radicals on electrified polymers. Chemical Science, 2017, 8, 2025-2032.	7.4	29
161	Precipitation of Oppositely Charged Nanoparticles by Dilution and/or Temperature Increase. Journal of Physical Chemistry B, 2009, 113, 1413-1417.	2.6	28
162	Chemical Network Algorithms for the Risk Assessment and Management of Chemical Threats. Angewandte Chemie - International Edition, 2012, 51, 7933-7937.	13.8	28

#	Article	IF	CITATIONS
163	Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16339-16343.	7.1	28
164	Magnetofluidic Tweezing of Nonmagnetic Colloids. Advanced Materials, 2016, 28, 3453-3459.	21.0	28
165	Electrostatic Titrations Reveal Surface Compositions of Mixed, On-Nanoparticle Monolayers Comprising Positively and Negatively Charged Ligands. Journal of Physical Chemistry C, 2016, 120, 4139-4144.	3.1	28
166	Self-assembly of like-charged nanoparticles into microscopic crystals. Nanoscale, 2016, 8, 157-161.	5.6	28
167	Metal–Organic Framework "Swimmers―with Energy-Efficient Autonomous Motility. ACS Nano, 2017, 11, 10914-10923.	14.6	28
168	Shaping Microcrystals of Metal–Organic Frameworks by Reaction–Diffusion. Angewandte Chemie - International Edition, 2020, 59, 10301-10305.	13.8	28
169	Estimating chemical reactivity and cross-influence from collective chemical knowledge. Chemical Science, 2012, 3, 1497.	7.4	26
170	Chemist Ex Machina: Advanced Synthesis Planning by Computers. Accounts of Chemical Research, 2021, 54, 1094-1106.	15.6	26
171	Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nature Electronics, 2021, 4, 109-115.	26.0	25
172	Liftâ€Off and Micropatterning of Mono―and Multilayer Nanoparticle Films. Small, 2009, 5, 1970-1973.	10.0	24
173	The dependence between forces and dissipation rates mediating dynamic self-assembly. Soft Matter, 2009, 5, 1279.	2.7	24
174	Sequential Reactions Directed by Core/Shell Catalytic Reactors. Small, 2010, 6, 857-863.	10.0	24
175	Independence of Primary and Secondary Structures in Periodic Precipitation Patterns. Journal of Physical Chemistry Letters, 2011, 2, 345-349.	4.6	24
176	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	5.0	24
177	Directed dynamic self-assembly of objects rotating on two parallel fluid interfaces. Journal of Chemical Physics, 2002, 116, 8571.	3.0	23
178	Nanoparticles That "Remember―Temperature. Small, 2010, 6, 1385-1387.	10.0	23
179	The unstable and expanding interface between reacting liquids: theoretical interpretation of negative surface tension. Soft Matter, 2012, 8, 1601-1608.	2.7	23
180	Fabrication of Topologically Complex Three-Dimensional Microstructures:Â Metallic Microknots. Journal of the American Chemical Society, 2000, 122, 12691-12699.	13.7	22

#	Article	IF	CITATIONS
181	Maskless Microetching of Transparent Conductive Oxides (ITO and ZnO) and Semiconductors (GaAs) Based on Reaction-Diffusion. Chemistry of Materials, 2006, 18, 4722-4723.	6.7	22
182	The Rate of Energy Dissipation Determines Probabilities of Nonâ€equilibrium Assemblies. Angewandte Chemie - International Edition, 2013, 52, 10304-10308.	13.8	22
183	Systems chemistry: a web themed issue. Chemical Communications, 2014, 50, 14924-14925.	4.1	22
184	Nonâ€Equilibrium Selfâ€Assembly of Monocomponent and Multicomponent Tubular Structures in Rotating Fluids. Advanced Materials, 2017, 29, 1704274.	21.0	22
185	Laserâ€induced fluorescence studies of jetâ€cooled S2O: Axisâ€switching and predissociation effects. Journal of Chemical Physics, 1995, 103, 67-79.	3.0	21
186	Freestanding Three-Dimensional Copper Foils Prepared by Electroless Deposition on Micropatterned Gels. Advanced Materials, 2005, 17, 751-755.	21.0	21
187	Modular Synthesis of Bipyridinium Oligomers and Corresponding Donor–Acceptor Oligorotaxanes with Crown Ethers. Organic Letters, 2012, 14, 5066-5069.	4.6	21
188	Microtubule guidance tested through controlled cell geometry. Journal of Cell Science, 2012, 125, 5790-5799.	2.0	21
189	Why Cells are Microscopic: A Transport-Time Perspective. Journal of Physical Chemistry Letters, 2013, 4, 861-865.	4.6	21
190	A long-lasting concentration cell based on a magnetic electrolyte. Nature Nanotechnology, 2014, 9, 901-906.	31.5	21
191	Macroscopic Synthesis of Self-Assembled Dissipative Structures. Journal of Physical Chemistry B, 2001, 105, 8770-8775.	2.6	20
192	Micropatterning Chemical Oscillations:Â Waves, Autofocusing, and Symmetry Breaking. Journal of the American Chemical Society, 2005, 127, 15943-15948.	13.7	20
193	Versatile and Efficient Synthesis of ω-Functionalized Asymmetric Disulfides via Sulfenyl Bromide Adducts. Langmuir, 2007, 23, 2318-2321.	3.5	20
194	Measurement of Proteinâ^'Ligand Binding Constants from Reaction-Diffusion Concentration Profiles. Analytical Chemistry, 2010, 82, 8780-8784.	6.5	20
195	Carboxybetaine Methacrylate Polymers Offer Robust, Long-Term Protection against Cell Adhesion. Langmuir, 2011, 27, 10800-10804.	3.5	20
196	Control and Switching of Charge-Selective Catalysis on Nanoparticles by Counterions. ACS Catalysis, 2018, 8, 7469-7474.	11.2	20
197	Arrays of microlenses of complex shapes prepared by reaction-diffusion in thin films of ionically doped gels. Applied Physics Letters, 2004, 85, 1871-1873.	3.3	19
198	Self-organization of planar microlenses by periodic precipitation. Journal of Applied Physics, 2005, 97, 126102.	2.5	19

#	Article	IF	CITATIONS
199	Melting in 2D Lennard-Jones Systems: What Type of Phase Transition?. Journal of Physical Chemistry C, 2010, 114, 20749-20755.	3.1	19
200	When and Why Like-Sized, Oppositely Charged Particles Assemble into Diamond-like Crystals. Journal of Physical Chemistry Letters, 2013, 4, 1507-1511.	4.6	19
201	Synthesis of Toroidal Gold Nanoparticles Assisted by Soft Templates. Langmuir, 2014, 30, 9886-9890.	3.5	19
202	Concentric liquid reactors for chemical synthesis and separation. Nature, 2020, 586, 57-63.	27.8	19
203	Scaffoldâ€Directed Face Selectivity Machineâ€Learned from Vectors of Nonâ€covalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 15230-15235.	13.8	19
204	Size Selection During Crystallization of Oppositely Charged Nanoparticles. Chemistry - A European Journal, 2009, 15, 2032-2035.	3.3	18
205	Formation of Dense Nanoparticle Monolayers Mediated by Alternating Current Electric Fields and Electrohydrodynamic Flows. Journal of Physical Chemistry C, 2010, 114, 8800-8805.	3.1	18
206	Heterogeneous Structure, Heterogeneous Dynamics, and Complex Behavior in Two-Dimensional Liquids. Journal of Physical Chemistry Letters, 2012, 3, 2431-2435.	4.6	18
207	Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites. Nature Communications, 2017, 8, 1564.	12.8	18
208	Linguistic measures of chemical diversity and the "keywords―of molecular collections. Scientific Reports, 2018, 8, 7598.	3.3	18
209	"Nanoarmoured―droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale, 2010, 2, 2366.	5.6	17
210	Short-term molecular polarization of cells on symmetric and asymmetric micropatterns. Soft Matter, 2010, 6, 3257.	2.7	17
211	Controlling Reversible Dielectric Breakdown in Metal/Polymer Nanocomposites. Advanced Materials, 2012, 24, 1850-1855.	21.0	17
212	A Priori Estimation of Organic Reaction Yields. Angewandte Chemie - International Edition, 2015, 54, 10797-10801.	13.8	17
213	Engineering Gram Selectivity of Mixed harge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angewandte Chemie, 2016, 128, 8752-8756.	2.0	17
214	Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves. Science Advances, 2018, 4, eaau3546.	10.3	16
215	Computational design of syntheses leading to compound libraries or isotopically labelled targets. Chemical Science, 2019, 10, 9219-9232.	7.4	16
216	Localized Chemical Wave Emission and Mode Switching in a Patterned Excitable Medium. Physical Review Letters, 2006, 97, 128702.	7.8	15

#	Article	IF	CITATIONS
217	Synthetic popularity reflects chemical reactivity. Journal of Physical Organic Chemistry, 2009, 22, 897-902.	1.9	15
218	Discovery and Enumeration of Organicâ€Chemical and Biomimetic Reaction Cycles within the Network of Chemistry. Angewandte Chemie - International Edition, 2018, 57, 2367-2371.	13.8	15
219	Molecular Tethering or Aggregation: Is the Existence of Chargeâ€Transfer Bands Indicative of the Formation of Blueâ€Box/Tetrathiafulvalene Inclusion Complexes?. Chemistry - A European Journal, 2012, 18, 5606-5611.	3.3	14
220	Dynamic Selfâ€Assembly of Magnetic/Polymer Composites in Rotating Frames of Reference. Advanced Materials, 2017, 29, 1700614.	21.0	14
221	Charged Metal Nanoparticles for Chemoelectronic Circuits. Advanced Materials, 2019, 31, e1804864.	21.0	14
222	Immature dendritic cells navigate microscopic mazes to find tumor cells. Lab on A Chip, 2019, 19, 1665-1675.	6.0	14
223	Prediction of Major Regioâ€; Siteâ€; and Diastereoisomers in Diels–Alder Reactions by Using Machineâ€Learning: The Importance of Physically Meaningful Descriptors. Angewandte Chemie, 2019, 131, 4563-4567.	2.0	14
224	Mixed-Charge, pH-Responsive Nanoparticles for Selective Interactions with Cells, Organelles, and Bacteria. Accounts of Materials Research, 2020, 1, 188-200.	11.7	14
225	A computer algorithm to discover iterative sequences of organic reactions. , 2022, 1, 49-58.		14
226	Blocking of Disulfide Adsorption by Coadsorbing ω-Functionalized Alkane Thiols Revealed by Wet Stamping and Fluorescence Microscopy. Langmuir, 2008, 24, 11600-11604.	3.5	13
227	Motility efficiency and spatiotemporal synchronization in non-metastatic <i>vs.</i> metastatic breast cancer cells. Integrative Biology (United Kingdom), 2013, 5, 1464-1473.	1.3	13
228	Universal Area Distributions in the Monolayers of Confluent Mammalian Cells. Physical Review Letters, 2014, 112, 138104.	7.8	13
229	Label-Free in Situ Optical Monitoring of the Adsorption of Oppositely Charged Metal Nanoparticles. Langmuir, 2014, 30, 13478-13482.	3.5	13
230	Artificial Heliotropism and Nyctinasty Based on Optomechanical Feedback and No Electronics. Soft Robotics, 2018, 5, 93-98.	8.0	13
231	The Influence of Distant Substrates on the Outcome of Contact Electrification. Angewandte Chemie - International Edition, 2018, 57, 15379-15383.	13.8	13
232	Computer-generated "synthetic contingency―plans at times of logistics and supply problems: scenarios for hydroxychloroquine and remdesivir. Chemical Science, 2020, 11, 6736-6744.	7.4	13
233	On-Nanoparticle Gating Units Render an Ordinary Catalyst Substrate- and Site-Selective. Journal of the American Chemical Society, 2021, 143, 1807-1815.	13.7	13
234	Materials, assemblies and reaction systems under rotation. Nature Reviews Materials, 2022, 7, 338-354.	48.7	13

#	Article	IF	CITATIONS
235	Wet-Stamped Precipitant Gradients Control the Growth of Protein Microcrystals in an Array of Nanoliter Wells. Journal of the American Chemical Society, 2008, 130, 2146-2147.	13.7	12
236	"Remote―Fabrication via Threeâ€Dimensional Reactionâ€Diffusion: Making Complex Coreâ€andâ€Shell Particles and Assembling Them into Open‣attice Crystals. Advanced Materials, 2009, 21, 1911-1915.	21.0	12
237	Additivity of the Excess Energy Dissipation Rate in a Dynamically Self-Assembled System. Journal of Physical Chemistry B, 2009, 113, 7574-7578.	2.6	12
238	Trapping, manipulation, and crystallization of live cells using magnetofluidic tweezers. Nanoscale Horizons, 2017, 2, 50-54.	8.0	12
239	Mechanism of Reactive Wetting and Direct Visual Determination of the Kinetics of Self-Assembled Monolayer Formation. Langmuir, 2009, 25, 9-12.	3.5	11
240	Uniform and directional growth of centimeter-sized single crystals of cyclodextrin-based metal organic frameworks. CrystEngComm, 2019, 21, 1867-1871.	2.6	11
241	Rewritable and pHâ€Sensitive Micropatterns Based on Nanoparticle "Inksâ€: Small, 2010, 6, 2114-2116.	10.0	10
242	Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples. Applied Magnetic Resonance, 2011, 40, 415-425.	1.2	10
243	Nanoparticle–Loaded Aerogels and Layered Aerogels Cast from Sol–Gel Mixtures. Small, 2011, 7, 2568-2572.	10.0	10
244	Amplification of Changes of a Thin Film's Macromolecular Structure into Macroscopic Reactionâ~'Diffusion Patterns. Journal of the American Chemical Society, 2005, 127, 6936-6937.	13.7	9
245	Nanoparticle-Based Solution Deposition of Gold Films Supporting Bioresistant SAMs. Langmuir, 2009, 25, 1905-1907.	3.5	9
246	Tomography and Staticâ€Mechanical Properties of Adherent Cells. Advanced Materials, 2012, 24, 5719-5726.	21.0	9
247	Efficient and Long-Lasting Current Rectification by Laminated Yet Separated, Oppositely Charged Monolayers. ACS Applied Electronic Materials, 2019, 1, 2295-2300.	4.3	9
248	Synergy Between Expert and Machineâ€Learning Approaches Allows for Improved Retrosynthetic Planning. Angewandte Chemie, 2020, 132, 735-740.	2.0	9
249	An Electrocatalytic Reaction As a Basis for Chemical Computing in Water Droplets. Journal of the American Chemical Society, 2021, 143, 16908-16912.	13.7	9
250	Nanostructural Anisotropy Underlies Anisotropic Electrical Bistability. Advanced Materials, 2013, 25, 1623-1628.	21.0	8
251	Largeâ€Area, Freestanding MOF Films of Planar, Curvilinear, or Micropatterned Topographies. Angewandte Chemie, 2017, 129, 133-138.	2.0	8
252	Is Organic Chemistry Really Growing Exponentially?. Angewandte Chemie - International Edition, 2021, 60, 26226-26232.	13.8	8

#	Article	IF	CITATIONS
253	Color Micropatterning with Reconfigurable Stamps. Journal of Physical Chemistry B, 2004, 108, 19904-19907.	2.6	7
254	Chemical reaction facilitates nanoscale mixing. Soft Matter, 2010, 6, 4441.	2.7	7
255	Reactionâ€Ðriven Mixing and Dispersion. Angewandte Chemie - International Edition, 2011, 50, 40-42.	13.8	7
256	The Rate of Energy Dissipation Determines Probabilities of Nonâ€equilibrium Assemblies. Angewandte Chemie, 2013, 125, 10494-10498.	2.0	7
257	Charged nanoparticles crystallizing and controlling crystallization: from coatings to nanoparticle surfactants to chemical amplifiers. CrystEngComm, 2014, 16, 9368-9380.	2.6	7
258	pH Oscillator Stretched in Space but Frozen in Time. Journal of Physical Chemistry Letters, 2015, 6, 760-766.	4.6	7
259	Scaffoldâ€Directed Face Selectivity Machineâ€Learned from Vectors of Nonâ€covalent Interactions. Angewandte Chemie, 2021, 133, 15358-15363.	2.0	7
260	Mixed-Charge Nanocarriers Allow for Selective Targeting of Mitochondria by Otherwise Nonselective Dyes. ACS Nano, 2021, 15, 11470-11490.	14.6	7
261	A Cost-Effective, Column-Free Route to Ethylene Glycol Oligomers EG6, EG10, and EG12. Synthesis, 2012, 44, 717-722.	2.3	6
262	Inorganic salts direct the assembly of charged nanoparticles into composite nanoscopic spheres, plates, or needles. Faraday Discussions, 2012, 159, 201.	3.2	6
263	Microphase separation as the cause of structural complexity in 2D liquids. Soft Matter, 2013, 9, 10042.	2.7	6
264	Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells. Advanced Materials Interfaces, 2014, 1, 1400158.	3.7	6
265	Network search algorithms and scoring functions for advancedâ€level computerized synthesis planning. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	6
266	Modeling the Kinetics of Acylation of Insulin using a Recursive Method for Solving the Systems of Coupled Differential Equations. Biophysical Journal, 2000, 78, 652-661.	0.5	5
267	Themed issue: self-assembly. Soft Matter, 2009, 5, 1109.	2.7	5
268	Mechanical Control of Surface Adsorption by Nanoscale Cracking. Advanced Materials, 2014, 26, 3667-3672.	21.0	5
269	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1900065.	6.1	5
270	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte Chemie - International Edition, 2019, 58, 4520-4525.	13.8	5

#	Article	IF	CITATIONS
271	Rapid Deposition of Hydrophobic Nanoparticle Monolayers onto Hydrophilic Surfaces from Liquidâ^'Liquid Interfaces. Langmuir, 2009, 25, 12855-12859.	3.5	4
272	Heterogeneous Catalysis "On Demand― Mechanically Controlled Catalytic Activity of a Metal Surface. ACS Applied Materials & Interfaces, 2017, 9, 44264-44269.	8.0	4
273	The Influence of Distant Substrates on the Outcome of Contact Electrification. Angewandte Chemie, 2018, 130, 15605-15609.	2.0	4
274	Shaping Microcrystals of Metal–Organic Frameworks by Reaction–Diffusion. Angewandte Chemie, 2020, 132, 10387-10391.	2.0	4
275	Is Organic Chemistry Really Growing Exponentially?. Angewandte Chemie, 2021, 133, 26430-26436.	2.0	4
276	Large-Scale, Wavelet-Based Analysis of Lysosomal Trajectories and Co-Movements of Lysosomes with Nanoparticle Cargos. Cells, 2022, 11, 270.	4.1	4
277	Multilevel Surface Nano- and Microstructuring via Sequential Photoswelling of Dichromated Gelatin. Langmuir, 2007, 23, 5419-5422.	3.5	3
278	Mechanofabrication of Pancake and Rodlike Nanostructures from Deformable Nanoparticle Aggregates. Small, 2009, 5, 2656-2658.	10.0	3
279	Temperature driven assembly of like-charged nanoparticles at non-planar liquid–liquid or gel–air interfaces. Nanoscale, 2014, 6, 4475.	5.6	3
280	Discovery and Enumeration of Organic hemical and Biomimetic Reaction Cycles within the Network of Chemistry. Angewandte Chemie, 2018, 130, 2391-2395.	2.0	3
281	Stimuli-responsive granular crystals assembled by dipolar and multipolar interactions. Soft Matter, 2021, 17, 8595-8604.	2.7	3
282	Mechanical and electrical properties of nanostructured â€~plastic metals'. Journal of Non-Crystalline Solids, 2009, 355, 1313-1317.	3.1	2
283	Electrostatically Templated Selfâ€Assembly of Polymeric Particles: The Role of Friction and Shape Complementarity. Advanced Functional Materials, 2011, 21, 4763-4768.	14.9	2
284	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte Chemie, 2019, 131, 4568-4573.	2.0	2
285	Additive Contact Polarization of Nonferroelectric Polymers for Patterning of Multilevel Memory Elements. ACS Applied Materials & amp; Interfaces, 2020, 12, 1504-1510.	8.0	2
286	Microfabrication Tools: Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells (Adv. Mater. Interfaces) Tj ETQq0 0 0 rg	BTaگverlo	ck110 Tf 50 1
287	Dynamic Assembly of Small Parts in Vortex–Vortex Traps Established within a Rotating Fluid. Advanced Materials, 2019, 31, e1902298.	21.0	1
288	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1970071.	6.1	1

#	Article	IF	CITATIONS
289	Proving Cooperativity of a Catalytic Reaction by Means of Nanoscale Geometry: The Case of Click Reaction. Journal of the American Chemical Society, 2022, 144, 11238-11245.	13.7	1
290	Cover Picture: Architecture and Evolution of Organic Chemistry (Angew. Chem. Int. Ed. 44/2005). Angewandte Chemie - International Edition, 2005, 44, 7145-7145.	13.8	0
291	Nanoparticle "inks― Rewritable and pH-Sensitive Micropatterns Based on Nanoparticle "Inks―(Small) Tj	E <u>T0.8</u> 1 1 (0.784314 г
292	Nanoparticle-Aerogel Composites: Nanoparticle-Loaded Aerogels and Layered Aerogels Cast from Sol-Gel Mixtures (Small 18/2011). Small, 2011, 7, 2542-2542.	10.0	0
293	Micropatterning: Tomography and Staticâ€Mechanical Properties of Adherent Cells (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgB ⁻ 21.0 rgB ⁻	T /Overlock
294	Nanocomposites: Controlling Reversible Dielectric Breakdown in Metal/Polymer Nanocomposites (Adv. Mater. 14/2012). Advanced Materials, 2012, 24, 1912-1912.	21.0	0
295	Back Cover: Material Transfer and Polarity Reversal in Contact Charging (Angew. Chem. Int. Ed.) Tj ETQq1 1 0.784	•314 rgBT 13.8	/Overlock 1
296	Programmed communication. Nature Nanotechnology, 2017, 12, 291-292.	31.5	0
297	SYNTHESIS PLANNING, REACTION DISCOVERY, AND DESIGN OF CHEMICAL SYSTEMS USING COMPUTERS. , 2021, , .		0
298	Micropatterned substrates: Tools for studying cell motility and aiding rational drug design. FASEB Journal, 2011, 25, .	0.5	0
299	Engines of discovery: Computers in advanced synthesis planning and identification of drug		0