Denis A Belyaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reappraising the Production and Transfer of Hydrogen Atoms From the Middle to the Upper Atmosphere of Mars at Times of Elevated Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
2	Seasonal Changes in the Vertical Structure of Ozone in the Martian Lower Atmosphere and Its Relationship to Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
3	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	10.3	37
4	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	8.1	25
5	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	5.1	17
6	The Spatial and Temporal Distribution of Nighttime Ozone and Sulfur Dioxide in the Venus Mesosphere as Deduced From SPICAV UV Stellar Occultations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006625.	3.6	6
7	Upper limits for phosphine (PH ₃) in the atmosphere of Mars. Astronomy and Astrophysics, 2021, 649, L1.	5.1	4
8	Revealing a High Water Abundance in the Upper Mesosphere of Mars With ACS Onboard TGO. Geophysical Research Letters, 2021, 48, e2021GL093411.	4.0	24
9	Isotopic fractionation of water and its photolytic products in the atmosphere of Mars. Nature Astronomy, 2021, 5, 943-950.	10.1	27
10	Isotopes of chlorine from HCl in the Martian atmosphere. Astronomy and Astrophysics, 2021, 651, A32.	5.1	7
11	Gravity Wave Activity in the Martian Atmosphere at Altitudes 20–160Âkm From ACS/TGO Occultation Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006899.	3.6	22
12	The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nature Geoscience, 2021, 14, 67-71.	12.9	30
13	Sulfur monoxide dimer chemistry as a possible source of polysulfur in the upper atmosphere of Venus. Nature Communications, 2021, 12, 175.	12.8	11
14	Isotopic Composition of CO ₂ in the Atmosphere of Mars: Fractionation by Diffusive Separation Observed by the ExoMars Trace Gas Orbiter. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	12
15	Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 2020, 335, 113368.	2.5	50
16	Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus Express. Planetary and Space Science, 2020, 184, 104868.	1.7	4
17	PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance. Space Science Reviews, 2020, 216, 1.	8.1	21
18	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	12.6	117

DENIS A BELYAEV

#	Article	IF	CITATIONS
19	First detection of ozone in the mid-infrared at Mars: implications for methane detection. Astronomy and Astrophysics, 2020, 639, A141.	5.1	23
20	Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter. Astronomy and Astrophysics, 2019, 630, A91.	5.1	24
21	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
22	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
23	Discovery of cloud top ozone on Venus. Icarus, 2019, 319, 491-498.	2.5	19
24	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
25	Scale heights and detached haze layers in the mesosphere of Venus from SPICAV IR data. Icarus, 2018, 311, 87-104.	2.5	7
26	Acousto-optic tunable filter spectrometers in space missions [Invited]. Applied Optics, 2018, 57, C103.	1.8	52
27	Acousto-optic infrared imaging spectrometer for close-up sensing of planetary surfaces. , 2018, , .		2
28	Night side distribution of SO2 content in Venus' upper mesosphere. Icarus, 2017, 294, 58-71.	2.5	32
29	Search for HBr and bromine photochemistry on Venus. Icarus, 2017, 293, 114-118.	2.5	26
30	Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus, 2017, 295, 16-33.	2.5	47
31	Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability. Icarus, 2017, 295, 1-15.	2.5	53
32	Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared. Optics Express, 2017, 25, 25980.	3.4	23
33	Near infrared imager for spectral and polarization analysis of planetary surfaces. , 2017, , .		1
34	Contribution from SOIR/VEX to the updated Venus International Reference Atmosphere (VIRA). Advances in Space Research, 2016, 57, 443-458.	2.6	15
35	Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus, 2016, 277, 154-170.	2.5	53
36	Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planetary and Space Science, 2015, 113-114, 193-204.	1.7	46

DENIS A BELYAEV

#	Article	IF	CITATIONS
37	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	1.7	37
38	Development of a space-borne spectrometer to monitor atmospheric ozone. Applied Optics, 2015, 54, 3315.	2.1	6
39	Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths. Icarus, 2013, 224, 57-65.	2.5	68
40	Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere. Nature Geoscience, 2013, 6, 25-28.	12.9	164
41	Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance. Applied Optics, 2013, 52, 1054.	1.8	17
42	Characterization of the stray light in a space borne atmospheric AOTF spectrometer. Optics Express, 2013, 21, 18354.	3.4	13
43	Improved calibration of SOIR/Venus Express spectra. Optics Express, 2013, 21, 21148.	3.4	30
44	Sulfur chemistry in the middle atmosphere of Venus. Icarus, 2012, 217, 714-739.	2.5	176
45	Vertical profiling of SO2 and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus, 2012, 217, 740-751.	2.5	103
46	SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 2012, 65, 38-57.	1.7	49
47	Studies of the planetary atmospheres in Russia (2007–2010). Izvestiya - Atmospheric and Oceanic Physics, 2012, 48, 309-331.	0.9	3
48	A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 2011, 216, 82-85.	2.5	81
49	An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus, 2011, 211, 58-69.	2.5	86
50	Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 2009, 200, 96-117.	2.5	98
51	A new method for determining the transfer function of an Acousto optical tunable filter. Optics Express, 2009, 17, 2005.	3.4	27
52	In-flight performance and calibration of SPICAV SOIR onboard Venus Express. Applied Optics, 2008, 47, 2252.	2.1	50
53	First observations of SO ₂ above Venus' clouds by means of Solar Occultation in the Infrared. Journal of Geophysical Research, 2008, 113, .	3.3	50
54	HDO and H ₂ O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	117

DENIS A BELYAEV

#	Article	IF	CITATIONS
55	Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	86
56	Venus Monitoring Camera for Venus Express. Planetary and Space Science, 2007, 55, 1701-1711.	1.7	87
57	A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature, 2007, 450, 646-649.	27.8	161
58	<title>Method of dynamic range expansion at acousto-optic analysis of radio-signal spectra</title> . , 2005, , .		0
59	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	5.1	16