Timothy J Vyse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718585/publications.pdf

Version: 2024-02-01

46918 69108 9,513 79 47 77 citations h-index g-index papers 87 87 87 12687 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 2008, 40, 204-210.	9.4	1,192
2	Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nature Genetics, 2015, 47, 1457-1464.	9.4	730
3	Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 1059-1061.	9.4	534
4	Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6758-6763.	3.3	428
5	FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nature Genetics, 2007, 39, 721-723.	9.4	421
6	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	5.8	314
7	Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nature Genetics, 2016, 48, 940-946.	9.4	283
8	A nonsynonymous functional variant in integrin- $\hat{l}_{\pm}M$ (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 152-154.	9.4	277
9	Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus. PLoS Genetics, 2011, 7, e1002341.	1.5	252
10	Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nature Genetics, 2011, 43, 253-258.	9.4	242
11	Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18680-18685.	3.3	231
12	Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Annals of the Rheumatic Diseases, 2015, 74, 912-920.	0.5	203
13	Tissue-Restricted Adaptive Type 2 Immunity Is Orchestrated by Expression of the Costimulatory Molecule OX40L on Group 2 Innate Lymphoid Cells. Immunity, 2018, 48, 1195-1207.e6.	6.6	191
14	Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. Journal of Clinical Investigation, 2015, 125, 413-424.	3.9	190
15	Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility. PLoS Genetics, 2011, 7, e1002079.	1.5	181
16	Complement genes contribute sex-biased vulnerability in diverse disorders. Nature, 2020, 582, 577-581.	13.7	158
17	Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E59-67.	3.3	151
18	A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap. PLoS Genetics, 2011, 7, e1002406.	1.5	148

#	Article	IF	Citations
19	Unraveling Multiple MHC Gene Associations with Systemic Lupus Erythematosus: Model Choice Indicates a Role for HLA Alleles and Non-HLA Genes in Europeans. American Journal of Human Genetics, 2012, 91, 778-793.	2.6	140
20	Genomeâ€Wide Association Study in an Amerindian Ancestry Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role of European Admixture. Arthritis and Rheumatology, 2016, 68, 932-943.	2.9	138
21	Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nature Communications, 2021, 12, 772.	5.8	128
22	X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1290-1300.	2.9	114
23	Genetic advances in systemic lupus erythematosus: an update. Current Opinion in Rheumatology, 2017, 29, 423-433.	2.0	112
24	Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2011, 70, 1752-1757.	0.5	110
25	CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nature Genetics, 2012, 44, 1227-1230.	9.4	110
26	Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis and Rheumatism, 2011, 63, 3493-3501.	6.7	109
27	Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production. PLoS Genetics, 2013, 9, e1003222.	1.5	107
28	MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus. PLoS Genetics, 2013, 9, e1003336.	1.5	107
29	A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Human Molecular Genetics, 2013, 22, 4021-4029.	1.4	104
30	GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nature Communications, 2019, 10, 4955.	5.8	100
31	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. American Journal of Human Genetics, 2017, 100, 885-894.	2.6	91
32	Identification of a Systemic Lupus Erythematosus Risk Locus Spanning <i>ATG16L2, FCHSD2</i> , and <i>P2RY2</i> in Koreans. Arthritis and Rheumatology, 2016, 68, 1197-1209.	2.9	89
33	Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in Systemic Lupus Erythematosus. Nature Communications, 2019, 10, 2164.	5.8	88
34	Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2012, 71, 694-699.	0.5	87
35	UBE2L3 Polymorphism Amplifies NF-κB Activation and Promotes Plasma Cell Development, Linking Linear Ubiquitination to Multiple Autoimmune Diseases. American Journal of Human Genetics, 2015, 96, 221-234.	2.6	84
36	Highâ€density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis and Rheumatism, 2009, 60, 1085-1095.	6.7	82

#	Article	IF	Citations
37	A Genome-wide Association Study Identifies Risk Alleles in Plasminogen and P4HA2 Associated with Giant Cell Arteritis. American Journal of Human Genetics, 2017, 100, 64-74.	2.6	78
38	Identification of a Systemic Lupus Erythematosus Susceptibility Locus at 11p13 between PDHX and CD44 in a Multiethnic Study. American Journal of Human Genetics, 2011, 88, 83-91.	2.6	72
39	The <i>rs1143679 </i> (R77H) lupus associated variant of <i <="" i="" itgam=""> (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Annals of the Rheumatic Diseases, 2012, 71, 2028-2034.</i>	0.5	70
40	ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1743-1754.	3.0	70
41	Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at <i>MSH5, HLA-DPB1</i> and <i>HLA-G</i> . Annals of the Rheumatic Diseases, 2012, 71, 777-784.	0.5	64
42	Identification of a Sj \tilde{A} gren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genetics, 2017, 13, e1006820.	1.5	60
43	A combined large-scale meta-analysis identifies <i>COG6</i> as a novel shared risk <i>locus</i> for rheumatoid arthritis and systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2017, 76, 286-294.	0.5	58
44	PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes. PLoS ONE, 2013, 8, e69404.	1.1	57
45	Genetically Determined Partial Complement C4 Deficiency States Are Not Independent Risk Factors for SLE in UK and Spanish Populations. American Journal of Human Genetics, 2012, 90, 445-456.	2.6	53
46	Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Human Molecular Genetics, 2020, 29, 1745-1756.	1.4	53
47	De novo mutations implicate novel genes in systemic lupus erythematosus. Human Molecular Genetics, 2018, 27, 421-429.	1.4	52
48	Evaluation of <i>TRAF6</i> in a large multiancestral lupus cohort. Arthritis and Rheumatism, 2012, 64, 1960-1969.	6.7	51
49	Tartrateâ€Resistant Acid Phosphatase Deficiency in the Predisposition to Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2017, 69, 131-142.	2.9	47
50	Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 2049-2057.	6.7	45
51	Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Human Molecular Genetics, 2018, 27, 3813-3824.	1.4	43
52	Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. Journal of Autoimmunity, 2018, 91, 1-12.	3.0	42
53	Mapping eQTLs with RNA-seq reveals novel susceptibility genes, non-coding RNAs and alternative-splicing events in systemic lupus erythematosus. Human Molecular Genetics, 2017, 26, ddw417.	1.4	39
54	Superresolution imaging of the cytoplasmic phosphatase PTPN22 links integrin-mediated T cell adhesion with autoimmunity. Science Signaling, 2016, 9, ra99.	1.6	37

#	Article	lF	Citations
55	Dysregulated CD46 shedding interferes with Th1â€contraction in systemic lupus erythematosus. European Journal of Immunology, 2017, 47, 1200-1210.	1.6	37
56	Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression. PLoS Genetics, 2013, 9, e1003870.	1.5	36
57	Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. American Journal of Human Genetics, 2015, 96, 731-739.	2.6	36
58	A plausibly causal functional lupus-associated risk variant in the STAT1–STAT4 locus. Human Molecular Genetics, 2018, 27, 2392-2404.	1.4	34
59	Identification of <i>ST3AGL4</i> , <i>MFHAS1, CSNK2A2</i> and <i>CD226</i> as loci associated with systemic lupus erythematosus (SLE) and evaluation of SLE genetics in drug repositioning. Annals of the Rheumatic Diseases, 2018, 77, 1078-1084.	0.5	34
60	IFN-Â production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Human Molecular Genetics, 2015, 24, 3571-3581.	1.4	33
61	Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis and Rheumatology, 2016, 68, 174-183.	2.9	30
62	Genetic overlap between autoimmune diseases and nonâ€Hodgkin lymphoma subtypes. Genetic Epidemiology, 2019, 43, 844-863.	0.6	28
63	Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. American Journal of Human Genetics, 2021, 108, 84-99.	2.6	26
64	Lupus risk variants in the PXK locus alter B-cell receptor internalization. Frontiers in Genetics, 2015, 5, 450.	1.1	25
65	Profiling RNA-Seq at multiple resolutions markedly increases the number of causal eQTLs in autoimmune disease. PLoS Genetics, 2017, 13, e1007071.	1.5	23
66	Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases. Arthritis Research and Therapy, 2014, 16, R114.	1.6	22
67	Improved monitoring of clinical response in Systemic Lupus Erythematosus by longitudinal trend in soluble vascular cell adhesion molecule-1. Arthritis Research and Therapy, 2016, 18, 5.	1.6	22
68	Meta-analysis of GWASÂonÂboth Chinese and European populations identifies GPR173 as a novel X chromosome susceptibility gene for SLE. Arthritis Research and Therapy, 2018, 20, 92.	1.6	19
69	Decreased <i>SMG7</i> expression associates with lupus-risk variants and elevated antinuclear antibody production. Annals of the Rheumatic Diseases, 2016, 75, 2007-2013.	0.5	16
70	Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus. Journal of Medical Genetics, 2017, 54, 381-389.	1.5	13
71	Th1 responses in vivo require cell-specific provision of OX40L dictated by environmental cues. Nature Communications, 2020, 11, 3421.	5.8	13
72	Nucleolin acts as the receptor for C1QTNF4 and supports C1QTNF4-mediated innate immunity modulation. Journal of Biological Chemistry, 2021, 296, 100513.	1.6	13

TIMOTHY J VYSE

#	Article	IF	CITATIONS
73	Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Annals of the Rheumatic Diseases, 2016, 75, 242-252.	0.5	10
74	Independent Replication on Genome-Wide Association Study Signals Identifies IRF3 as a Novel Locus for Systemic Lupus Erythematosus. Frontiers in Genetics, 2020, 11 , 600.	1.1	9
75	Trans-Ancestral Fine-Mapping and Epigenetic Annotation as Tools to Delineate Functionally Relevant Risk Alleles at IKZF1 and IKZF3 in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 2020, 21, 8383.	1.8	7
76	Complement <i>C4</i> , the Major Histocompatibility Complex, and Autoimmunity. Arthritis and Rheumatology, 2022, 74, 1318-1320.	2.9	4
77	Reduced Fluorescence versus Forward Scatter Time-of-Flight and Increased Peak versus Integral Fluorescence Ratios Indicate Receptor Clustering in Flow Cytometry. Journal of Immunology, 2015, 195, 377-385.	0.4	3
78	Major histocompatibility complex and SLE. , 2021, , 5-24.		0
79	OA13â€∫Comprehensive genetic and functional analyses of Fc gamma receptors explain response to rituximab therapy for autoimmune rheumatic diseases. Rheumatology, 2022, 61, .	0.9	0