
Edward Susko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718449/publications.pdf Version: 2024-02-01

FOWARD SUSKO

#	Article	IF	CITATIONS
1	On Reduced Amino Acid Alphabets for Phylogenetic Inference. Molecular Biology and Evolution, 2007, 24, 2139-2150.	8.9	157
2	A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny. BMC Evolutionary Biology, 2008, 8, 331.	3.2	94
3	A SUF Fe-S Cluster Biogenesis System in the Mitochondrion-Related Organelles of the Anaerobic Protist Pygsuia. Current Biology, 2014, 24, 1176-1186.	3.9	94
4	Covarion Shifts Cause a Long-Branch Attraction Artifact That Unites Microsporidia and Archaebacteria in EF-11± Phylogenies. Molecular Biology and Evolution, 2004, 21, 1340-1349.	8.9	93
5	Bootstrap Support Is Not First-Order Correct. Systematic Biology, 2009, 58, 211-223.	5.6	59
6	On the Distributions of Bootstrap Support and Posterior Distributions for a Star Tree. Systematic Biology, 2008, 57, 602-612.	5.6	57
7	Estimation of Rates-Across-Sites Distributions in Phylogenetic Substitution Models. Systematic Biology, 2003, 52, 594-603.	5.6	55
8	Testing for Differences in Rates-Across-Sites Distributions in Phylogenetic Subtrees. Molecular Biology and Evolution, 2002, 19, 1514-1523.	8.9	51
9	Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nature Ecology and Evolution, 2022, 6, 253-262.	7.8	48
10	The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference. Systematic Biology, 2019, 68, 1003-1019.	5.6	45
11	On Inconsistency of the Neighbor-Joining, Least Squares, and Minimum Evolution Estimation When Substitution Processes Are Incorrectly Modeled. Molecular Biology and Evolution, 2004, 21, 1629-1642.	8.9	43
12	First-Order Correct Bootstrap Support Adjustments for Splits that Allow Hypothesis Testing When Using Maximum Likelihood Estimation. Molecular Biology and Evolution, 2010, 27, 1621-1629.	8.9	31
13	A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics, 2011, 27, 2655-2663.	4.1	27
14	Long Branch Attraction Biases in Phylogenetics. Systematic Biology, 2021, 70, 838-843.	5.6	26
15	Biases in Phylogenetic Estimation Can Be Caused by Random Sequence Segments. Journal of Molecular Evolution, 2005, 61, 351-359.	1.8	25
16	Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biology, 2017, 15, 8.	3.8	25
17	Shifting Balance on a Static Mutation–Selection Landscape: A Novel Scenario of Positive Selection. Molecular Biology and Evolution, 2016, 34, msw237.	8.9	24
18	Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome. Genome Biology and Evolution, 2017, 9, 380-397.	2.5	24

EDWARD SUSKO

#	Article	IF	CITATIONS
19	Alignment Errors Strongly Impact Likelihood-Based Tests for Comparing Topologies. Molecular Biology and Evolution, 2014, 31, 3057-3067.	8.9	23
20	Phenomenological Load on Model Parameters Can Lead to False Biological Conclusions. Molecular Biology and Evolution, 2018, 35, 1473-1488.	8.9	23
21	Confidence Regions and Hypothesis Tests for Topologies Using Generalized Least Squares. Molecular Biology and Evolution, 2003, 20, 862-868.	8.9	22
22	An Amino Acid Substitution-Selection Model Adjusts Residue Fitness to Improve Phylogenetic Estimation. Molecular Biology and Evolution, 2014, 31, 779-792.	8.9	22
23	Bayesian Long Branch Attraction Bias and Corrections. Systematic Biology, 2015, 64, 243-255.	5.6	22
24	Accelerated Estimation of Frequency Classes in Site-Heterogeneous Profile Mixture Models. Molecular Biology and Evolution, 2018, 35, 1266-1283.	8.9	22
25	On the Use of Information Criteria for Model Selection in Phylogenetics. Molecular Biology and Evolution, 2020, 37, 549-562.	8.9	22
26	CONTINUOUS-TIME MARKOV MODELS FOR SPECIES INTERACTIONS. Ecology, 2005, 86, 3272-3278.	3.2	17
27	Cellular costs underpin micronutrient limitation in phytoplankton. Science Advances, 2021, 7, .	10.3	17
28	Tests for Two Trees Using Likelihood Methods. Molecular Biology and Evolution, 2014, 31, 1029-1039.	8.9	16
29	The Probability of Correctly Resolving a Split as an Experimental Design Criterion in Phylogenetics. Systematic Biology, 2012, 61, 811-821.	5.6	15
30	A Phenotype–Genotype Codon Model for Detecting Adaptive Evolution. Systematic Biology, 2020, 69, 722-738.	5.6	12
31	Evolution: Reconstructing the Timeline ofÂEukaryogenesis. Current Biology, 2021, 31, R193-R196.	3.9	12
32	Modelling Prokaryote Gene Content. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	10
33	Evolution of amino acid propensities under stability-mediated epistasis. Molecular Biology and Evolution, 2022, , .	8.9	7
34	Smoothed Bootstrap Aggregation for Assessing Selection Pressure at Amino Acid Sites. Molecular Biology and Evolution, 2016, 33, 2976-2989.	8.9	6
35	Conditions under which distributions of edge length ratios on phylogenetic trees can be used to order evolutionary events. Journal of Theoretical Biology, 2021, 526, 110788.	1.7	6
36	Shifts in amino acid preferences as proteins evolve: A synthesis of experimental and theoretical work. Protein Science, 2021, 30, 2009-2028.	7.6	5

EDWARD SUSKO

#	Article	IF	CITATIONS
37	Improved Least Squares Topology Testing and Estimation. Systematic Biology, 2011, 60, 668-675.	5.6	4
38	Looking for Darwin in Genomic Sequences: Validity and Success Depends on the Relationship Between Model and Data. Methods in Molecular Biology, 2019, 1910, 399-426.	0.9	4
39	Estimation of a residual distribution with small numbers of repeated measurements. Canadian Journal of Statistics, 2002, 30, 383-400.	0.9	3
40	ModL: exploring and restoring regularity when testing for positive selection. Bioinformatics, 2019, 35, 2545-2554.	4.1	3
41	Bayes factor biases for nonâ€nested models and corrections. Canadian Journal of Statistics, 2017, 45, 290-309.	0.9	2
42	Ancestral state reconstruction with large numbers of sequences and edge-length estimation. Journal of Mathematical Biology, 2022, 84, 21.	1.9	2
43	Split-specific bootstrap measures for quantifying phylogenetic stability and the influence of taxon selection. Molecular Phylogenetics and Evolution, 2016, 105, 114-125.	2.7	1
44	Using minimum bootstrap support for splits to construct confidence regions for trees. Evolutionary Bioinformatics, 2007, 2, 129-43.	1.2	1
45	Estimation of relaxation time distributions in magnetic resonance imaging. Canadian Journal of Statistics, 2001, 29, 379-394.	0.9	0
46	Statistical Analysis of Expressed Sequence Tags. Methods in Molecular Biology, 2009, 533, 277-287.	0.9	0