Fujun Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718059/publications.pdf

Version: 2024-02-01

759233 752698 20 551 12 20 citations h-index g-index papers 20 20 20 1046 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15, 421-432.	7.2	109
2	Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone–Naphthalimide–Polyamine Conjugates with Antimetastatic Activity. Journal of Medicinal Chemistry, 2017, 60, 2071-2083.	6.4	73
3	A Natural Small Molecule Harmine Inhibits Angiogenesis and Suppresses Tumour Growth through Activation of p53 in Endothelial Cells. PLoS ONE, 2012, 7, e52162.	2.5	66
4	Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis <i>via </i> AKT/ \hat{l}^2 -catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget, 2017, 8, 1092-1109.	1.8	47
5	Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer. Neoplasia, 2014, 16, 665-677.	5. 3	35
6	PKA turnover by the REG \hat{I}^3 -proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis. Journal of Molecular and Cellular Cardiology, 2014, 72, 28-38.	1.9	28
7	Extracellular polyamines-induced proliferation and migration of cancer cells by ODC, SSAT, and Akt1-mediated pathway. Anti-Cancer Drugs, 2017, 28, 457-464.	1.4	28
8	Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine, 2016, 23, 686-693.	5 . 3	25
9	Discovery of the Polyamine Conjugate with Benzo[<i>cd</i>]indol-2(1 <i>H</i>)-one as a Lysosome-Targeted Antimetastatic Agent. Journal of Medicinal Chemistry, 2018, 61, 6814-6829.	6.4	23
10	Design, Synthesis and Evaluation of Naphthalimide Derivatives as Potential Anticancer Agents for Hepatocellular Carcinoma. Molecules, 2017, 22, 342.	3.8	19
11	A novel synthetic small molecule <scp>YH</scp> â€306 suppresses colorectal tumour growth and metastasis <i>via </i> <scp>FAK</scp> pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 383-395.	3.6	13
12	Inhibition of breast cancer progression by a novel histone deacetylase inhibitor, <scp>LW</scp> 479, by downâ€regulating <scp>EGFR</scp> expression. British Journal of Pharmacology, 2015, 172, 3817-3830.	5 . 4	13
13	Synthesis and biological evaluation of novel alkylated polyamine analogues as potential anticancer agents. European Journal of Medicinal Chemistry, 2018, 143, 1732-1743.	5 . 5	13
14	Synthesis and biological evaluation of novel asymmetric naphthalene diimide derivatives as anticancer agents depending on ROS generation. MedChemComm, 2018, 9, 1377-1385.	3.4	11
15	Synthesis and biological evaluation of naphthalimide-polyamine conjugates modified by alkylation as anticancer agents through p53 pathway. Bioorganic Chemistry, 2018, 77, 16-24.	4.1	10
16	The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers, 2020, 12, 528.	3.7	10
17	Identification of molecular anti-metastasis mechanisms of lycorine in colorectal cancer by RNA-seq analysis. Phytomedicine, 2021, 85, 153530.	5 . 3	10
18	Suppression of oxidative phosphorylation and IDH2 sensitizes colorectal cancer to a naphthalimide derivative and mitoxantrone. Cancer Letters, 2021, 519, 30-45.	7.2	9

#	Article	IF	CITATIONS
19	Design, Synthesis, and Biological Evaluation of Benzo[cd]indol-2(1H)-ones Derivatives as a Lysosome-Targeted Anti-metastatic Agent. Frontiers in Oncology, 2021, 11, 733589.	2.8	5
20	Reactive Oxygen Species Mediate 6c-Induced Mitochondrial and Lysosomal Dysfunction, Autophagic Cell Death, and DNA Damage in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 10987.	4.1	4