List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717722/publications.pdf Version: 2024-02-01

ΚΛΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Green Synthesis of Biphasic TiO ₂ –Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2012, 4, 3893-3901.	8.0	509
2	Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5, 4775.	12.8	367
3	Hierarchical MnCo-layered double hydroxides@Ni(OH) ₂ core–shell heterostructures as advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 1043-1049.	10.3	296
4	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	19.5	268
5	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 3290-3298.	13.8	254
6	An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy and Environmental Science, 2016, 9, 499-503.	30.8	241
7	Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A, 2011, 345, 101-107.	4.8	226
8	Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10, 2001.	12.8	222
9	Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale, 2013, 5, 5093.	5.6	204
10	Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal, 2012, 193-194, 203-210.	12.7	197
11	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie, 2021, 133, 3327-3335.	2.0	189
12	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 11819-11823.	13.8	178
13	Hydrogen Peroxide Production from Solar Water Oxidation. ACS Energy Letters, 2019, 4, 3018-3027.	17.4	170
14	Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H ₂ O Oxidative H ₂ O ₂ Synthesis. Journal of the American Chemical Society, 2020, 142, 8641-8648.	13.7	168
15	Energy Manipulation in Lanthanideâ€Doped Core–Shell Nanoparticles for Tunable Dualâ€Mode Luminescence toward Advanced Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2002121.	21.0	165
16	Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nature Communications, 2016, 7, 11943.	12.8	144
17	Vertically Oriented MoS ₂ with Spatially Controlled Geometry on Nitrogenous Graphene Sheets for Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1703300.	19.5	144
18	Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy, 2015, 13, 182-191.	16.0	138

#	Article	IF	CITATIONS
19	Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO ₄ . Nano Letters, 2015, 15, 6756-6763.	9.1	125
20	Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Letters, 2019, 19, 1118-1123.	9.1	124
21	Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Materials Letters, 2012, 81, 127-130.	2.6	116
22	Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catalysis, 2019, 9, 10260-10278.	11.2	116
23	Boosting Charge Transport in BiVO ₄ Photoanode for Solar Water Oxidation. Advanced Materials, 2022, 34, e2108178.	21.0	111
24	Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts. Ultrasonics Sonochemistry, 2011, 18, 765-772.	8.2	109
25	Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Physical Chemistry Chemical Physics, 2012, 14, 11119.	2.8	107
26	Graphene/Acid Coassisted Synthesis of Ultrathin MoS ₂ Nanosheets with Outstanding Rate Capability for a Lithium Battery Anode. Inorganic Chemistry, 2013, 52, 9807-9812.	4.0	106
27	Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. Journal of Materials Chemistry A, 2017, 5, 4543-4549.	10.3	105
28	Surface Localization of Defects in Black TiO ₂ : Enhancing Photoactivity or Reactivity. Journal of Physical Chemistry Letters, 2017, 8, 199-207.	4.6	97
29	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	9.1	96
30	Highly Efficient Solar Water Splitting from Transferred TiO ₂ Nanotube Arrays. Nano Letters, 2015, 15, 5709-5715.	9.1	95
31	Solution-processed yolk–shell-shaped WO ₃ /BiVO ₄ heterojunction photoelectrodes for efficient solar water splitting. Journal of Materials Chemistry A, 2018, 6, 2585-2592.	10.3	95
32	Efficient Combination of G ₃ N ₄ and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. Small, 2021, 17, e2007523.	10.0	93
33	Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chemistry of Materials, 2014, 26, 5592-5597.	6.7	88
34	Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 4803-4810.	10.3	87
35	Modulating Epitaxial Atomic Structure of Antimonene through Interface Design. Advanced Materials, 2019, 31, e1902606.	21.0	84
36	Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in Highâ€Rate Lithiumâ€Ion Batteries and the Hydrogen Evolution Reaction. ChemSusChem, 2014, 7, 2489-2495.	6.8	82

#	Article	IF	CITATIONS
37	Tunable Bandgap Energy and Promotion of H ₂ O ₂ Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles. Advanced Energy Materials, 2016, 6, 1502352.	19.5	79
38	Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel. Separation and Purification Technology, 2012, 86, 98-105.	7.9	77
39	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie, 2016, 128, 11998-12002.	2.0	71
40	Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting. Nanoscale, 2013, 5, 1939.	5.6	70
41	Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale, 2018, 10, 8397-8403.	5.6	66
42	3D Covalent Organic Frameworks with Interpenetrated pcb Topology Based on 8-Connected Cubic Nodes. Journal of the American Chemical Society, 2022, 144, 5728-5733.	13.7	66
43	A two-photon tandem black phosphorus quantum dot-sensitized BiVO ₄ photoanode for solar water splitting. Energy and Environmental Science, 2022, 15, 672-679.	30.8	64
44	Graphene oxide papers with high water adsorption capacity for air dehumidification. Scientific Reports, 2017, 7, 9761.	3.3	63
45	Aligned Heterointerfaceâ€Induced 1Tâ€MoS ₂ Monolayer with Nearâ€Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small, 2019, 15, e1804903.	10.0	63
46	Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Advanced Energy Materials, 2017, 7, 1600923.	19.5	61
47	Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H ₂ Generation. Advanced Functional Materials, 2016, 26, 4527-4534.	14.9	60
48	Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chemical Engineering Journal, 2011, 175, 76-83.	12.7	58
49	Synthesis of nanostructured ZnO/Bi2WO6 heterojunction for photocatalysis application. Separation and Purification Technology, 2012, 92, 115-120.	7.9	58
50	Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation. Ultrasonics Sonochemistry, 2012, 19, 883-889.	8.2	54
51	Tailoring natural layered β-phase antimony into few layer antimonene for Li storage with high rate capabilities. Journal of Materials Chemistry A, 2019, 7, 3238-3243.	10.3	54
52	Disordered layers on WO ₃ nanoparticles enable photochemical generation of hydrogen from water. Journal of Materials Chemistry A, 2019, 7, 221-227.	10.3	54
53	Double 2-dimensional H 2 -evoluting catalyst tipped photocatalyst nanowires: A new avenue for high-efficiency solar to H 2 generation. Nano Energy, 2017, 34, 481-490.	16.0	51
54	Understanding the positive effects of (Co–Pi) co-catalyst modification in inverse-opal structured α-Fe2O3-based photoelectrochemical cells. International Journal of Hydrogen Energy, 2013, 38, 12725-12732.	7.1	50

#	Article	IF	CITATIONS
55	Defect Dominated Hierarchical Tiâ€Metalâ€Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal. Advanced Functional Materials, 2021, 31, 2102511.	14.9	50
56	Graphene oxide-assisted production of carbon nitrides using a solution process and their photocatalytic activity. Carbon, 2014, 66, 119-125.	10.3	49
57	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	3.7	49
58	Strategy for Boosting Li-Ion Current in Silicon Nanoparticles. ACS Energy Letters, 2018, 3, 2252-2258.	17.4	49
59	Artificial photosynthesis for highâ€valueâ€added chemicals: Old material, new opportunity. , 2022, 4, 21-44.		49
60	A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9636.	10.3	48
61	Rapid sonochemical synthesis of irregular nanolaminar-like Bi2WO6 as efficient visible-light-active photocatalysts. Ultrasonics Sonochemistry, 2013, 20, 209-215.	8.2	47
62	Engineering of 2D/2D MoS ₂ /Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S Photocatalyst for Solar H ₂ Evolution Coupled with Degradation of Plastic in Alkaline Solution. Solar Rrl, 2021, 5, 2000427.	5.8	46
63	Multiple Heterojunction in Single Titanium Dioxide Nanoparticles for Novel Metal-Free Photocatalysis. Nano Letters, 2018, 18, 4257-4262.	9.1	45
64	Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N ₂ fixation. Journal of Materials Chemistry A, 2019, 7, 25887-25893.	10.3	45
65	Si–Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 1702-1708.	8.0	44
66	Continuous Oxygen Vacancy Gradient in TiO ₂ Photoelectrodes by a Photoelectrochemicalâ€Driven "Selfâ€Purification―Process. Advanced Energy Materials, 2022, 12, .	19.5	42
67	Tuning Selectivity of Photoelectrochemical Water Oxidation via Facet-Engineered Interfacial Energetics. ACS Energy Letters, 2021, 6, 4071-4078.	17.4	39
68	Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 11717.	2.8	38
69	Core-Shelled Low-Oxidation State Oxides@Reduced Graphene Oxides Cubes via Pressurized Reduction for Highly Stable Lithium Ion Storage. Advanced Functional Materials, 2016, 26, 2959-2965.	14.9	38
70	Mechanistic Understanding of Two-Dimensional Phosphorus, Arsenic, and Antimony High-Capacity Anodes for Fast-Charging Lithium/Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 29559-29566.	3.1	38
71	Chemically Modified Graphene Oxide-Wrapped Quasi-Micro Ag Decorated Silver Trimolybdate Nanowires for Photocatalytic Applications. Journal of Physical Chemistry C, 2013, 117, 24023-24032.	3.1	37
72	DFT coupled with NEGF study of a promising two-dimensional channel material: black phosphorene-type GaTeCl. Nanoscale, 2018, 10, 3350-3355.	5.6	37

#	Article	IF	CITATIONS
73	Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO ₂ -MWCNT Catalyst. Bulletin of the Korean Chemical Society, 2010, 31, 1589-1595.	1.9	37
74	Boosting interfacial charge migration of TiO2/BiVO4 photoanode by W doping for photoelectrochemical water splitting. Electrochimica Acta, 2019, 300, 138-144.	5.2	36
75	Suppressing Water Dissociation via Control of Intrinsic Oxygen Defects for Awakening Solar H ₂ Oâ€ŧoâ€H ₂ O ₂ Generation. Small, 2021, 17, e2100400.	10.0	36
76	Physicochemical and photocatalytic activities of self-assembling TiO2 nanoparticles on nanocarbons surface. Current Applied Physics, 2012, 12, 346-352.	2.4	34
77	Dual or multi carbonaceous coating strategies for next-generation batteries. Journal of Materials Chemistry A, 2018, 6, 1900-1914.	10.3	32
78	Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity. Energy Storage Materials, 2020, 26, 534-542.	18.0	32
79	Degradation of Rhodamine B by Fe-Carbon Nanotubes/TiO2 Composites under UV Light in Aerated Solution. Chinese Journal of Catalysis, 2010, 31, 751-758.	14.0	31
80	Sonochemical assisted synthesis of a novel TiO2/graphene composite for solar energy conversion. Synthetic Metals, 2012, 162, 827-833.	3.9	31
81	Epitaxial growth of WO ₃ nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. Journal of Materials Chemistry A, 2018, 6, 19542-19546.	10.3	31
82	Epigallocatechin-3-gallate protected vanadium-induced eggshell depigmentation via P38MAPK-Nrf2/HO-1 signaling pathway in laying hens. Poultry Science, 2018, 97, 3109-3118.	3.4	30
83	A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. Nanoscale, 2016, 8, 3474-3481.	5.6	29
84	High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes. Electrochimica Acta, 2016, 214, 31-37.	5.2	28
85	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	6.8	27
86	Rationally Designed Copperâ€Modified Polymeric Carbon Nitride as a Photocathode for Solar Water Splitting. ChemSusChem, 2019, 12, 866-872.	6.8	26
87	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021, 31, 2102300.	14.9	26
88	PVdF-HFP/exfoliated graphene oxide nanosheet hybrid separators for thermally stable Li-ion batteries. RSC Advances, 2016, 6, 80706-80711.	3.6	24
89	An Ãngström-level <i>d</i> -spacing controlling synthetic route for MoS ₂ towards stable intercalation of sodium ions. Journal of Materials Chemistry A, 2018, 6, 22513-22518.	10.3	24
90	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	19.1	24

#	Article	IF	CITATIONS
91	A new curved gradient deficient shell element of absolute nodal coordinate formulation for modeling thin shell structures. Nonlinear Dynamics, 2013, 74, 153-164.	5.2	21
92	A "surface patching―strategy to achieve highly efficient solar water oxidation beyond surface passivation effect. Nano Energy, 2019, 66, 104110.	16.0	20
93	Rationally designed hybrids of NiCo2O4 and polymeric carbon nitride as faradaic electrodes with enhanced electrochemical performance. Electrochimica Acta, 2019, 299, 717-726.	5.2	20
94	Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability. Journal of Power Sources, 2016, 336, 307-315.	7.8	18
95	Zinc Stannate Nanocrystal–Based Ultrarapidâ€Response UV Photodetectors. Advanced Materials Technologies, 2018, 3, 1800085.	5.8	18
96	Isolation and expression studies of the ERD15 gene involved in drought-stressed responses. Genetics and Molecular Research, 2014, 13, 10852-10862.	0.2	16
97	Band engineering realized by chemical combination in 2D group VA–VA materials. Nanoscale Horizons, 2019, 4, 1145-1152.	8.0	15
98	Pressurized Alloying Assisted Synthesis of High Quality Antimonene for Capacitive Deionization. Advanced Functional Materials, 2021, 31, 2102766.	14.9	15
99	Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films?. Applied Physics Letters, 2013, 102, .	3.3	14
100	Controlled thermal sintering of a metal–metal oxide–carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries. Chemical Communications, 2014, 50, 2589.	4.1	14
101	Boosting faradaic reactions of metal oxides on polymeric carbon nitride/PANI hybrid. Energy Storage Materials, 2020, 25, 487-494.	18.0	14
102	The Photocatalytic Decomposition of Different Organic Dyes under UV Irradiation with and without H ₂ O ₂ on Fe-ACF/TiO ₂ Photocatalysts. Journal of the Korean Ceramic Society, 2009, 46, 561-567.	2.3	14
103	Interaction of Rhodamine 6G molecules with graphene: a combined computational–experimental study. Physical Chemistry Chemical Physics, 2016, 18, 28418-28427.	2.8	13
104	Dietary fibre alleviates hepatic fat deposition via inhibiting lipogenic gene expression in meat ducks. Journal of Animal Physiology and Animal Nutrition, 2018, 102, e736-e745.	2.2	13
105	Boosting the photoelectrochemical activities of all-inorganic perovskite SrTiO ₃ nanofibers by engineering homo/hetero junctions. Journal of Materials Chemistry A, 2018, 6, 17530-17539.	10.3	13
106	Enhancing photoelectrochemical performance of the Bi ₂ MoO ₆ photoanode by ferroelectric polarization regulation. Nanoscale, 2020, 12, 18446-18454.	5.6	13
107	A novel and simple approach for the synthesis of Fe3O4-graphene composite. Korean Journal of Chemical Engineering, 2012, 29, 989-993.	2.7	12
108	Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. Journal of Materials Chemistry A, 2019, 7, 25985-25992.	10.3	12

#	Article	IF	CITATIONS
109	Influence of dietary rapeseed meal levels on growth performance, organ health and standardized ileal amino acid digestibility in meat ducks from 15 to 35Âdays of age. Journal of Animal Physiology and Animal Nutrition, 2017, 101, 1297-1306.	2.2	11
110	Photocatalytic Degradation of Methyl Orange on Platinum and Palladium Co-doped TiO2 Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 685-691.	0.6	10
111	Solution processable formation of a few nanometer thick-disordered overlayer on the surface of open-ended TiO ₂ nanotubes. Chemical Communications, 2016, 52, 13807-13810.	4.1	10
112	Metabolites from the co-culture of nigranoic acid and <i>Umbelopsis dimorpha</i> SWUKD3.1410, an endophytic fungus from <i>Kadsura angustifolia</i> . Natural Product Research, 2017, 31, 1414-1421.	1.8	10
113	Porous supraparticles of LiFePO4 nanorods with carbon for high rate Li-ion batteries. Materials Express, 2018, 8, 316-324.	0.5	10
114	Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China. Journal of Agricultural Science, 2011, 149, 205-216.	1.3	9
115	Hollow and yolk-shell structured off-stoichiometric tungsten trioxide via selective leaching and hydrogenation for enhanced lithium storage properties. Electrochimica Acta, 2016, 215, 466-472.	5.2	9
116	Nontopological transformation of hierarchical TiO2 by self-regulated etching and capping roles of Fâ°' for photocatalytic H2 evolution. Applied Surface Science, 2019, 473, 738-745.	6.1	9
117	Large and reversible sodium storage through interlaced reaction design. Energy Storage Materials, 2020, 25, 687-694.	18.0	9
118	Au/MoS2 tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Applied Catalysis B: Environmental, 2022, 308, 121219.	20.2	9
119	Cu ₂ Oâ^'Cu ₂ Se Mixedâ€Phase Nanoflake Arrays: pHâ€Universal Hydrogen Evolution Reactions with Ultralow Overpotential. ChemElectroChem, 2019, 6, 5014-5021.	3.4	8
120	Highly sensitive detection and imaging of ultraviolet-B light for precisely controlling vitamin D generation in the human body. Journal of Materials Chemistry C, 2019, 7, 4503-4508.	5.5	8
121	δ-VOPO4 nanosheet with intrinsic V4+ defective as high-performance cathode for sodium-ion battery. Materials Today Energy, 2021, 21, 100756.	4.7	8
122	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	20.1	8
123	Precise synthesis of single-atom Mo, W, Nb coordinated with oxygen functional groups of graphene oxide for stable and selective two-electron oxygen reduction in neutral media. Journal of Materials Chemistry A, 2022, 10, 9488-9496.	10.3	8
124	Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light. Bulletin of the Korean Chemical Society, 2010, 31, 1128-1134.	1.9	6
125	Enhanced photocatalytic activity by the tunnel effect of microstructured InVO4/WO3 heterojunctions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 253-261.	1.7	5
126	Redescription of <i>Platevindex mortoni</i> (Gastropoda: Eupulmonata: Onchidiidae) from China. Molluscan Research, 2017, 37, 72-78.	0.7	4

#	Article	lF	CITATIONS
127	, Characterization of Methylene Blue Decomposition on Fe-ACF/TiO2Photocatalysts Under UV Irradiation with or Without H2O2. Korean Journal of Materials Research, 2009, 19, 481-487.	0.2	4
128	Effect of biogas slurry and sucrose addition on electrokinetic removal of arsenic from paddy soil. International Journal of Environmental Science and Technology, 2023, 20, 703-714.	3.5	3
129	P-Type AsP Nanosheet as an Electron Donor for Stable Solar Broad-Spectrum Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 55102-55111.	8.0	2