Till Kleinebecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717696/publications.pdf

Version: 2024-02-01

69 papers

3,936 citations

30 h-index 59 g-index

76 all docs 76 docs citations

76 times ranked 5948 citing authors

#	Article	IF	Citations
1	Mapping terrestrial ecosystem health in drylands: comparison of field-based information with remotely sensed data at watershed level. Landscape Ecology, 2023, 38, 705-724.	4.2	5
2	Control of carbon and nitrogen accumulation by vegetation in pristine bogs of southern Patagonia. Science of the Total Environment, 2022, 810, 151293.	8.0	5
3	Present and historical landscape structure shapes current species richness in Central European grasslands. Landscape Ecology, 2022, 37, 745-762.	4.2	9
4	The Evolution of Ecological Diversity in Acidobacteria. Frontiers in Microbiology, 2022, 13, 715637.	3. 5	15
5	Soil conditions drive belowâ€ground trait space in temperate agricultural grasslands. Journal of Ecology, 2022, 110, 1189-1200.	4.0	5
6	Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands. Science of the Total Environment, 2022, 836, 155748.	8.0	4
7	Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands. Nutrient Cycling in Agroecosystems, 2022, 123, 83-104.	2.2	6
8	Mowing machinery and migratory sheep herds are complementary dispersal vectors for grassland species. Applied Vegetation Science, 2021, 24, e12579.	1.9	5
9	Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Science Advances, 2021, 7, .	10.3	27
10	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
11	Restoration of plant diversity in permanent grassland by seeding: Assessing the limiting factors along landâ€use gradients. Journal of Applied Ecology, 2021, 58, 1681-1692.	4.0	19
12	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40
13	The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany. Land, 2021, 10, 1028.	2.9	12
14	Modelling Agroforestry's Contributions to Peopleâ€"A Review of Available Models. Agronomy, 2021, 11, 2106.	3.0	16
15	Assessing the impact of grassland management on landscape multifunctionality. Ecosystem Services, 2021, 52, 101366.	5.4	25
16	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
17	The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.	7.8	93
18	Drought boosts risk of nitrate leaching from grassland fertilisation. Science of the Total Environment, 2020, 726, 137877.	8.0	20

#	Article	IF	CITATIONS
19	Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Functional Ecology, 2020, 34, 1485-1496.	3.6	30
20	Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 2019, 56, 168-179.	4.0	42
21	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in landâ€use intensity, plant species richness and community composition. Journal of Ecology, 2019, 107, 2635-2649.	4.0	20
22	Will I stay or will I go? Plant speciesâ€specific response and tolerance to high landâ€use intensity in temperate grassland ecosystems. Journal of Vegetation Science, 2019, 30, 674-686.	2.2	45
23	Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence. Biogeosciences, 2019, 16, 541-559.	3.3	19
24	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 2019, 107, 2197-2210.	4.0	57
25	Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species. Plant and Soil, 2019, 437, 215-239.	3.7	14
26	Eleven years' data of grassland management in Germany. Biodiversity Data Journal, 2019, 7, e36387.	0.8	32
27	Hemiparasite-density effects on grassland plant diversity, composition and biomass. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 22-29.	2.7	17
28	Does plant diversity affect the water balance of established grassland systems?. Ecohydrology, 2018, 11, e1945.	2.4	7
29	Effects of mowing, grazing and fertilization on soil seed banks in temperate grasslands in Central Europe. Agriculture, Ecosystems and Environment, 2018, 256, 211-217.	5.3	25
30	And the winner is …. ! A test of simple predictors of plant species richness in agricultural grasslands. Ecological Indicators, 2018, 87, 296-301.	6.3	12
31	Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Global Change Biology, 2018, 24, 2828-2840.	9.5	35
32	Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. Restoration Ecology, 2018, 26, S114.	2.9	32
33	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.9	13
34	Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecology and Evolution, 2018, 8, 601-616.	1.9	22
35	Soil carbon sequestration due to postâ€Soviet cropland abandonment: estimates from a largeâ€scale soil organic carbon field inventory. Global Change Biology, 2017, 23, 3729-3741.	9.5	56
36	Time lags in functional response to management regimes – evidence from a 26â€year field experiment in wet meadows. Journal of Vegetation Science, 2017, 28, 313-324.	2.2	7

3

#	Article	IF	CITATIONS
37	Patterns and potentials of plant species richness in high†and lowâ€maintenance urban grasslands. Applied Vegetation Science, 2017, 20, 18-27.	1.9	39
38	High-Resolution Classification of South Patagonian Peat Bog Microforms Reveals Potential Gaps in Up-Scaled CH4 Fluxes by use of Unmanned Aerial System (UAS) and CIR Imagery. Remote Sensing, 2016, 8, 173.	4.0	46
39	Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances. Science of the Total Environment, 2016, 566-567, 215-222.	8.0	35
40	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
41	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
42	Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation. Plant Ecology, 2016, 217, 843-856.	1.6	25
43	Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodiversity and Conservation, 2016, 25, 2361-2379.	2.6	18
44	Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nature Communications, 2016, 7, 10697.	12.8	125
45	Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 2015, 18, 834-843.	6.4	578
46	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
47	Environmental variation as a key process of coâ€existence in floodâ€meadows. Journal of Vegetation Science, 2015, 26, 480-491.	2.2	15
48	Birch encroachment affects the base cation chemistry in a restored bog. Ecohydrology, 2014, 7, 1163-1171.	2.4	5
49	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
50	Evidence from the real world: ¹⁵ N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. Journal of Ecology, 2014, 102, 456-465.	4.0	55
51	Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. Agriculture, Ecosystems and Environment, 2013, 177, 1-9.	5. 3	40
52	Unmanned aerial vehicles as innovative remote sensing platforms for highâ€resolution infrared imagery to support restoration monitoring in cutâ€over bogs. Applied Vegetation Science, 2013, 16, 509-517.	1.9	95
53	Fast and Inexpensive Detection of Total and Extractable Element Concentrations in Aquatic Sediments Using Near-Infrared Reflectance Spectroscopy (NIRS). PLoS ONE, 2013, 8, e70517.	2.5	22
54	Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?. PLoS ONE, 2013, 8, e78134.	2.5	12

#	Article	IF	CITATIONS
55	NIRS meets Ellenberg's indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecological Indicators, 2012, 14, 82-86.	6.3	49
56	Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands. PLoS ONE, 2012, 7, e51520.	2.5	25
57	A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 2012, 13, 207-220.	2.7	325
58	The Effects of Climate-Change-Induced Drought and Freshwater Wetlands. , 2012, , 117-147.		12
59	Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 287-295.	2.7	48
60	Reducing Sample Quantity and Maintaining High Prediction Quality of Grassland Biomass Properties with near Infrared Reflectance Spectroscopy. Journal of Near Infrared Spectroscopy, 2011, 19, 495-505.	1.5	32
61	Effects of grazing on seasonal variation of aboveground biomass quality in calcareous grasslands. Plant Ecology, 2011, 212, 1563-1576.	1.6	35
62	Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs. Austral Ecology, 2010, 35, 1-12.	1.5	31
63	Interspecific and geographical differences of plant tissue nutrient concentrations along an environmental gradient in Southern Patagonia, Chile. Aquatic Botany, 2010, 92, 149-156.	1.6	18
64	Prediction of Î' ¹³ C and Î' ¹⁵ N in plant tissues with nearâ€infrared reflectance spectroscopy. New Phytologist, 2009, 184, 732-739.	7.3	57
65	Changes in wet meadow vegetation after 20 years of different management in a field experiment (North-West Germany). Agriculture, Ecosystems and Environment, 2009, 134, 108-114.	5.3	40
66	Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany. Biological Conservation, 2009, 142, 2941-2948.	4.1	45
67	South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. Journal of Vegetation Science, 2008, 19, 151-160.	2.2	41
68	Gradients of continentality and moisture in South Patagonian ombrotrophic peatland vegetation. Folia Geobotanica, 2007, 42, 363-382.	0.9	55
69	Enriching plant diversity in grasslands by large-scale experimental sward disturbance and seed addition along gradients of land-use intensity. Journal of Plant Ecology, 0, , rtw062.	2.3	8