Nikolai D Denkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7716501/publications.pdf

Version: 2024-02-01

160 papers 12,584 citations

59 h-index 26613 107 g-index

166 all docs

166
docs citations

166 times ranked 8712 citing authors

#	Article	IF	Citations
1	Rheological properties of rotator and crystalline phases of alkanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127926.	4.7	9
2	Self-emulsification in chemical and pharmaceutical technologies. Current Opinion in Colloid and Interface Science, 2022, 59, 101576.	7.4	14
3	Foam Generation and Stability: Role of the Surfactant Structure and Asphaltene Aggregates. Industrial & Engineering Chemistry Research, 2022, 61, 372-381.	3.7	7
4	Cold-Burst Method for Nanoparticle Formation with Natural Triglyceride Oils. Langmuir, 2021, 37, 7875-7889.	3.5	8
5	Comment on "Faceting and Flattening of Emulsion Droplets: A Mechanical Model― Physical Review Letters, 2021, 126, 259801.	7.8	5
6	Rechargeable self-assembled droplet microswimmers driven by surface phase transitions. Nature Physics, 2021, 17, 1050-1055.	16.7	23
7	Rotator phases in hexadecane emulsion drops revealed by X-ray synchrotron techniques. Journal of Colloid and Interface Science, 2021, 604, 260-271.	9.4	9
8	Structure and Undulations of Escin Adsorption Layer at Water Surface Studied by Molecular Dynamics. Molecules, 2021, 26, 6856.	3.8	3
9	Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions. Food Hydrocolloids, 2020, 99, 105319.	10.7	11
10	Foamability of aqueous solutions: Role of surfactant type and concentration. Advances in Colloid and Interface Science, 2020, 276, 102084.	14.7	102
11	Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions. Journal of Colloid and Interface Science, 2020, 564, 264-275.	9.4	36
12	Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocolloids, 2020, 105, 105, 105, 105, 105, 105, 105, 10	10.7	23
13	Physicochemical control of foam properties. Current Opinion in Colloid and Interface Science, 2020, 50, 101376.	7.4	49
14	Preparation of TiO2 Nanoparticle Aggregates and Capsules by the †Two-Emulsion Method†M. Colloids and Interfaces, 2020, 4, 57.	2.1	2
15	Revealing the Origin of the Specificity of Calcium and Sodium Cations Binding to Adsorption Monolayers of Two Anionic Surfactants. Journal of Physical Chemistry B, 2020, 124, 10514-10528.	2.6	6
16	Nanopore and Nanoparticle Formation with Lipids Undergoing Polymorphic Phase Transitions. ACS Nano, 2020, 14, 8594-8604.	14.6	11
17	Origin of the extremely high elasticity of bulk emulsions, stabilized by Yucca Schidigera saponins. Food Chemistry, 2020, 316, 126365.	8.2	10
18	Spontaneous particle desorption and "Gorgon―drop formation from particle-armored oil drops upon cooling. Soft Matter, 2020, 16, 2480-2496.	2.7	5

#	Article	IF	Citations
19	Structure of Dense Adsorption Layers of Escin at the Air–Water Interface Studied by Molecular Dynamics Simulations. Langmuir, 2019, 35, 12876-12887.	3.5	17
20	Surface phase transitions in foams and emulsions. Current Opinion in Colloid and Interface Science, 2019, 44, 32-47.	7.4	19
21	Rotator phases in alkane systems: In bulk, surface layers and micro/nano-confinements. Advances in Colloid and Interface Science, 2019, 269, 7-42.	14.7	83
22	Multilayer Formation in Self-Shaping Emulsion Droplets. Langmuir, 2019, 35, 5484-5495.	3.5	22
23	Shape-shifting polyhedral droplets. Physical Review Research, 2019, 1, .	3.6	15
24	Control of surfactant solution rheology using medium-chain cosurfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 173-184.	4.7	38
25	Self-regulation of foam volume and bubble size during foaming via shear mixing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 18-28.	4.7	26
26	Emergence of Polygonal Shapes in Oil Droplets and Living Cells: The Potential Role of Tensegrity in the Origin of Life., 2018,, 427-490.		11
27	Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Development and Industrial Pharmacy, 2018, 44, 677-686.	2.0	101
28	Effect of Surfactant–Bile Interactions on the Solubility of Hydrophobic Drugs in Biorelevant Dissolution Media. Molecular Pharmaceutics, 2018, 15, 5741-5753.	4.6	29
29	Bottom-Up Synthesis of Polymeric Micro- and Nanoparticles with Regular Anisotropic Shapes. Macromolecules, 2018, 51, 7456-7462.	4.8	34
30	Theory of Shape-Shifting Droplets. Physical Review Letters, 2017, 118, 088001.	7.8	29
31	Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 534, 16-25.	4.7	45
32	Role of Pickering stabilization and bulk gelation for the preparation and properties of solid silica foams. Journal of Colloid and Interface Science, 2017, 504, 48-57.	9.4	30
33	Efficient self-emulsification via cooling-heating cycles. Nature Communications, 2017, 8, 15012.	12.8	43
34	"Self-Shaping―of Multicomponent Drops. Langmuir, 2017, 33, 5696-5706.	3.5	30
35	Factors affecting the stability of water-oil-water emulsion films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 608-620.	4.7	39
36	Mechanisms and Control of Self-Emulsification upon Freezing and Melting of Dispersed Alkane Drops. Langmuir, 2017, 33, 12155-12170.	3.5	18

#	Article	IF	CITATIONS
37	Self-Assembly of Escin Molecules at the Air–Water Interface as Studied by Molecular Dynamics. Langmuir, 2017, 33, 8330-8341.	3.5	45
38	Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 32-39.	4.7	48
39	Particle detachment from fluid interfaces: theory vs. experiments. Soft Matter, 2016, 12, 7632-7643.	2.7	45
40	Factors affecting the coalescence stability of microbubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 21-29.	4.7	21
41	On the Mechanism of Drop Self-Shaping in Cooled Emulsions. Langmuir, 2016, 32, 7985-7991.	3.5	41
42	Control of drop shape transformations in cooled emulsions. Advances in Colloid and Interface Science, 2016, 235, 90-107.	14.7	51
43	Surface properties of adsorption layers formed from triterpenoid and steroid saponins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 491, 18-28.	4.7	65
44	Role of interactions between cationic polymers and surfactants for foam properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 378-391.	4.7	29
45	The mechanism of lowering cholesterol absorption by calcium studied by using an in vitro digestion model. Food and Function, 2016, 7, 151-163.	4.6	26
46	Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature, 2015, 528, 392-395.	27.8	123
47	Mechanisms of cholesterol and saturated fatty acid lowering by Quillaja saponaria extract, studied by in vitro digestion model. Food and Function, 2015, 6, 1319-1330.	4.6	20
48	Molecular Dynamics Simulation of the Aggregation Patterns in Aqueous Solutions of Bile Salts at Physiological Conditions. Journal of Physical Chemistry B, 2015, 119, 15631-15643.	2.6	36
49	Lowering of cholesterol bioaccessibility and serum concentrations by saponins: in vitro and in vivo studies. Food and Function, 2015, 6, 501-512.	4.6	54
50	Adsorption of linear alkyl benzene sulfonates on oil–water interface: Effects of Na+, Mg2+ and Ca2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 18-27.	4.7	31
51	Rheological responses of Pickering emulsions prepared using colloidal hydrophilic silica particles in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 168-174.	4.7	34
52	Mechanistic understanding of the modes of action of foam control agents. Advances in Colloid and Interface Science, 2014, 206, 57-67.	14.7	101
53	Factors controlling the formation and stability of foams used as precursors of porous materials. Journal of Colloid and Interface Science, 2014, 426, 9-21.	9.4	79
54	The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers. Soft Matter, 2014, 10, 7034-7044.	2.7	57

#	Article	IF	CITATIONS
55	Drying of particle-loaded foams for production of porous materials: mechanism and theoretical modeling. RSC Advances, 2014, 4, 811-823.	3.6	36
56	Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter, 2013, 9, 5738.	2.7	94
57	Surface and foam properties of SLES+CAPB+fatty acid mixtures: Effect of pH for C12–C16 acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 186-198.	4.7	31
58	Role of polymer–surfactant interactions in foams: Effects of pH and surfactant head group for cationic polyvinylamine and anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 174-185.	4.7	66
59	Efficient Control of the Rheological and Surface Properties of Surfactant Solutions Containing C8–C18 Fatty Acids as Cosurfactants. Langmuir, 2013, 29, 8255-8265.	3.5	37
60	In vitro study of triglyceride lipolysis and phase distribution of the reaction products and cholesterol: effects of calcium and bicarbonate. Food and Function, 2012, 3, 1206.	4.6	15
61	Foaming and Foam Stability for Mixed Polymer–Surfactant Solutions: Effects of Surfactant Type and Polymer Charge. Langmuir, 2012, 28, 4996-5009.	3.5	208
62	Surface Shear Rheology of Saponin Adsorption Layers. Langmuir, 2012, 28, 12071-12084.	3.5	77
63	Effects of Emulsifier Charge and Concentration on Pancreatic Lipolysis. 1. In the Absence of Bile Salts. Langmuir, 2012, 28, 8127-8139.	3.5	28
64	Effects of Emulsifier Charge and Concentration on Pancreatic Lipolysis: 2. Interplay of Emulsifiers and Biles. Langmuir, 2012, 28, 12140-12150.	3.5	46
65	Effect of Cationic Polymers on Foam Rheological Properties. Langmuir, 2012, 28, 1115-1126.	3.5	21
66	Control of Ostwald Ripening by Using Surfactants with High Surface Modulus. Langmuir, 2011, 27, 14807-14819.	3.5	110
67	Efficient Emulsification of Viscous Oils at High Drop Volume Fraction. Langmuir, 2011, 27, 14783-14796.	3.5	59
68	Surface Rheology of Saponin Adsorption Layers. Langmuir, 2011, 27, 12486-12498.	3.5	177
69	Antibubble lifetime: Influence of the bulk viscosity and of the surface modulus of the mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 43-45.	4.7	27
70	Modified Capillary Cell for Foam Film Studies Allowing Exchange of the Film-Forming Liquid. Langmuir, 2009, 25, 6035-6039.	3.5	14
71	The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter, 2009, 5, 3389.	2.7	177
72	Jamming in Sheared Foams and Emulsions, Explained by Critical Instability of the Films between Neighboring Bubbles and Drops. Physical Review Letters, 2009, 103, 118302.	7.8	37

#	Article	IF	Citations
73	Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 2008, 10, 1608.	2.8	388
74	Instrument and methods for surface dilatational rheology measurements. Review of Scientific Instruments, 2008, 79, 104102.	1.3	67
75	Surfactant Mixtures for Control of Bubble Surface Mobility in Foam Studies. Langmuir, 2008, 24, 9956-9961.	3.5	149
76	Viscous Friction in Foams and Concentrated Emulsions under Steady Shear. Physical Review Letters, 2008, 100, 138301.	7.8	85
77	Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions. Physical Review E, 2008, 78, 011405.	2.1	65
78	Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions. Physical Review E, 2008, 78, 051405.	2.1	63
79	Chemical Physics of Colloid Systems and Interfaces. , 2008, , 197-377.		16
80	Emulsification in turbulent flow:. Journal of Colloid and Interface Science, 2007, 310, 570-589.	9.4	81
81	Emulsification in turbulent flow. Journal of Colloid and Interface Science, 2007, 312, 363-380.	9.4	227
82	Emulsification in turbulent flow. Journal of Colloid and Interface Science, 2007, 313, 612-629.	9.4	87
83	Effect of Thermal Treatment, Ionic Strength, and pH on the Short-Term and Long-Term Coalescence Stability of \hat{l}^2 -Lactoglobulin Emulsions. Langmuir, 2006, 22, 6042-6052.	3.5	57
84	Selection of Surfactants for Stable Paraffin-in-Water Dispersions, undergoing Solidâ^'Liquid Transition of the Dispersed Particles. Langmuir, 2006, 22, 3560-3569.	3.5	96
85	Numerical simulation and experimental study of emulsification in a narrow-gap homogenizer. Chemical Engineering Science, 2006, 61, 5841-5855.	3.8	41
86	Foam–wall friction: Effect of air volume fraction for tangentially immobile bubble surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 329-347.	4.7	64
87	Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity. Advances in Colloid and Interface Science, 2006, 119, 1-16.	14.7	40
88	Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface. Advances in Colloid and Interface Science, 2006, $119, 17-33$.	14.7	32
89	Coalescence stability of emulsions containing globular milk proteins. Advances in Colloid and Interface Science, 2006, 123-126, 259-293.	14.7	281
90	Wall slip and viscous dissipation in sheared foams: Effect of surface mobility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 129-145.	4.7	176

#	Article	IF	Citations
91	Effects of Electrolyte Concentration and pH on the Coalescence Stability of \hat{l}^2 -Lactoglobulin Emulsions: \hat{A} Experiment and Interpretation. Langmuir, 2005, 21, 4842-4855.	3.5	63
92	Hydrophobization of Glass Surface by Adsorption of Poly(dimethylsiloxane). Langmuir, 2005, 21, 11729-11737.	3.5	32
93	Composition of mixed adsorption layers and micelles in solutions of sodium dodecyl sulfate and dodecyl acid diethanol amide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233, 193-201.	4.7	21
94	Evaluation of the Precision of Drop-Size Determination in Oil/Water Emulsions by Low-Resolution NMR Spectroscopy. Langmuir, 2004, 20, 11402-11413.	3.5	74
95	Mechanisms of Foam Destruction by Oil-Based Antifoams. Langmuir, 2004, 20, 9463-9505.	3.5	339
96	Role of Surfactant Type and Concentration for the Mean Drop Size during Emulsification in Turbulent Flow. Langmuir, 2004, 20, 7444-7458.	3.5	212
97	Synergistic Sphere-to-Rod Micelle Transition in Mixed Solutions of Sodium Dodecyl Sulfate and Cocoamidopropyl Betaine. Langmuir, 2004, 20, 565-571.	3.5	163
98	Interrelation between Drop Size and Protein Adsorption at Various Emulsification Conditions. Langmuir, 2003, 19, 5640-5649.	3.5	173
99	Model Studies on the Mechanism of Deactivation (Exhaustion) of Mixed Oilâ^'Silica Antifoams. Langmuir, 2003, 19, 3084-3089.	3.5	15
100	Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer. 3. Experiments with Single Drops. Langmuir, 2002, 18, 7896-7905.	3.5	22
101	Role of Oil Spreading for the Efficiency of Mixed Oilâ^'Solid Antifoams. Langmuir, 2002, 18, 5810-5817.	3.5	41
102	Model Studies of the Effect of Silica Hydrophobicity on the Efficiency of Mixed Oilâ^'Silica Antifoams. Langmuir, 2002, 18, 8761-8769.	3.5	19
103	Optimal Hydrophobicity of Silica in Mixed Oilâ^'Silica Antifoams. Langmuir, 2002, 18, 3399-3403.	3.5	33
104	Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer. 1. Empty and Swollen Micelles. Langmuir, 2002, 18, 7880-7886.	3.5	38
105	Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer. 2. Theoretical Model. Langmuir, 2002, 18, 7887-7895.	3.5	29
106	Coalescence in β-Lactoglobulin-Stabilized Emulsions:  Effects of Protein Adsorption and Drop Size. Langmuir, 2002, 18, 8960-8971.	3.5	124
107	Kinetics of Solubilization of n-Decane and Benzene by Micellar Solutions of Sodium Dodecyl Sulfate. Journal of Colloid and Interface Science, 2002, 245, 371-382.	9.4	56
108	Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209, 83-104.	4.7	94

#	Article	IF	Citations
109	Role of Entry Barriers in Foam Destruction by Oil Drops. Surfactant Science, 2002, , 465-500.	0.0	5
110	Chemical Physics of Colloid Systems and Interfaces. , 2002, , .		3
111	Effect of Oily Additives on Foamability and Foam Stability. 1. Role of Interfacial Properties. Langmuir, 2001, 17, 6999-7010.	3.5	88
112	Foam Boosting by Amphiphilic Molecules in the Presence of Silicone Oil. Langmuir, 2001, 17, 969-979.	3 . 5	62
113	Role of Surface Diffusion for the Drainage and Hydrodynamic Stability of Thin Liquid Films. Langmuir, 2001, 17, 1150-1156.	3.5	32
114	Effect of Oily Additives on Foamability and Foam Stability. 2. Entry Barriers. Langmuir, 2001, 17, 7011-7021.	3 . 5	57
115	Van der Waals Interaction between Two Truncated Spheres Covered by a Uniform Layer (Deformed) Tj ETQq $1\ 1\ C$).784314 3.5	rgBT /Overlo
116	Foam Destruction by Mixed Solidâ^'Liquid Antifoams in Solutions of Alkyl Glucoside:  Electrostatic Interactions and Dynamic Effects. Langmuir, 2001, 17, 2426-2436.	3 . 5	42
117	Particles with an Undulated Contact Line at a Fluid Interface:Â Interaction between Capillary Quadrupoles and Rheology of Particulate Monolayers. Langmuir, 2001, 17, 7694-7705.	3.5	126
118	Capillary forces and structuring in layers of colloid particles. Current Opinion in Colloid and Interface Science, 2001, 6, 383-401.	7.4	503
119	Role of Betaine as Foam Booster in the Presence of Silicone Oil Drops. Langmuir, 2000, 16, 1000-1013.	3.5	121
120	Mechanisms of Action of Mixed Solidâ^Liquid Antifoams:Â 3. Exhaustion and Reactivation. Langmuir, 2000, 16, 2515-2528.	3. 5	45
121	Mechanisms of Action of Mixed Solidâ^'Liquid Antifoams. 1. Dynamics of Foam Film Rupture. Langmuir, 1999, 15, 8514-8529.	3.5	84
122	Mechanisms of Action of Mixed Solidâ^'Liquid Antifoams. 2. Stability of Oil Bridges in Foam Films. Langmuir, 1999, 15, 8530-8542.	3.5	56
123	Modification of ultrafiltration membranes by deposition of colloid particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 331-342.	4.7	3
124	Energy of Adhesion of Human T Cells to Adsorption Layers of Monoclonal Antibodies Measured by a Film Trapping Technique. Biophysical Journal, 1998, 75, 545-556.	0.5	18
125	Electron Cryomicroscopy of Bacteriorhodopsin Vesicles: Mechanism of Vesicle Formation. Biophysical Journal, 1998, 74, 1409-1420.	0.5	43
126	LATERAL CAPILLARY FORCES AND TWO-DIMENSIONA ARRAYS OF COLLOID PARTICLES AND PROTEIN MOLECULES. Journal of Dispersion Science and Technology, 1997, 18, 577-591.	2.4	10

#	Article	IF	CITATIONS
127	DLVO AND NON-DLVO SURFACE FORCES AND INTERACTIONS IN COLLOIDAL DISPERSIONS. Journal of Dispersion Science and Technology, 1997, 18, 647-659.	2.4	5
128	Charging of Oilâ^'Water Interfaces Due to Spontaneous Adsorption of Hydroxyl Ions. Langmuir, 1996, 12, 2045-2051.	3.5	705
129	Film Trapping Technique:Â Precise Method for Three-Phase Contact Angle Determination of Solid and Fluid Particles of Micrometer Size. Langmuir, 1996, 12, 6665-6675.	3.5	90
130	Precise Method for Measuring the Shear Surface Viscosity of Surfactant Monolayers. Langmuir, 1996, 12, 2650-2653.	3.5	71
131	Method for controlled formation of vitrified films for cryo-electron microscopy. Ultramicroscopy, 1996, 65, 147-158.	1.9	31
132	Nanoparticle Arrays in Freely Suspended Vitrified Films. Physical Review Letters, 1996, 76, 2354-2357.	7.8	54
133	Flocculation of Deformable Emulsion Droplets. Journal of Colloid and Interface Science, 1995, 176, 189-200.	9.4	60
134	Flocculation of Deformable Emulsion Droplets. Journal of Colloid and Interface Science, 1995, 176, 201-213.	9.4	69
135	Measurement of the Drag Coefficient of Spherical Particles Attached to Fluid Interfaces. Journal of Colloid and Interface Science, 1995, 172, 147-154.	9.4	83
136	Analytical expression for the oscillatory structural surface force. Chemical Physics Letters, 1995, 240, 385-392.	2.6	102
137	Stresses in lipid membranes and interactions between inclusions. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3415.	1.7	55
138	Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces. Journal of Physics Condensed Matter, 1994, 6, A395-A402.	1.8	66
139	Capillary Image Forces. Journal of Colloid and Interface Science, 1994, 167, 47-65.	9.4	56
140	Capillary Image Forces. Journal of Colloid and Interface Science, 1994, 167, 66-73.	9.4	43
141	Formation of two-dimensional structures from colloidal particles on fluorinated oil substrate. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2077.	1.7	84
142	Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface. Journal of Colloid and Interface Science, 1993, 155, 420-437.	9.4	146
143	Lateral Capillary Forces between Floating Submillimeter Particles. Journal of Colloid and Interface Science, 1993, 157, 100-112.	9.4	212
144	Adsorption from Surfactant Solutions under Diffusion Control. Journal of Colloid and Interface Science, 1993, 161, 361-365.	9.4	22

#	Article	IF	CITATIONS
145	Diffusion and light scattering in dispersions of charged particles with thin electrical double layers. Chemical Physics, 1993, 175, 265-270.	1.9	8
146	Two-dimensional crystallization. Nature, 1993, 361, 26-26.	27.8	713
147	Investigation of the mechanisms of stabilization of food emulsions by vegetable proteins. Food Hydrocolloids, 1993, 7, 55-71.	10.7	38
148	Coalescence dynamics of deformable Brownian emulsion droplets. Langmuir, 1993, 9, 1731-1740.	3. 5	76
149	Direct measurement of lateral capillary forces. Langmuir, 1993, 9, 3702-3709.	3.5	97
150	Pair interaction energy between deformable drops and bubbles. Journal of Chemical Physics, 1993, 99, 7179-7189.	3.0	75
151	Interaction between deformable Brownian droplets. Physical Review Letters, 1993, 71, 3226-3229.	7.8	39
152	Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992, 8, 3183-3190.	3 . 5	1,091
153	Interfacial properties and emulsion stability in fluorinated oil—non-fluorinated oil—surfactant(s) systems. Colloids and Surfaces, 1992, 67, 81-93.	0.9	20
154	Light scattering and diffusion in suspensions of strongly charged particles at low volume fractions. Physica A: Statistical Mechanics and Its Applications, 1992, 183, 462-489.	2.6	30
155	A possible mechanism of stabilization of emulsions by solid particles. Journal of Colloid and Interface Science, 1992, 150, 589-593.	9.4	261
156	Diffusion of charged colloidal particles at low volume fraction: Theoretical model and light scattering experiments. Journal of Colloid and Interface Science, 1992, 149, 329-344.	9.4	82
157	Contact angle, film, and line tension of foam films. I. Stationary and dynamic contact angle measurements. Journal of Colloid and Interface Science, 1992, 151, 446-461.	9.4	25
158	Capillary meniscus interaction between a microparticle and a wall. Colloids and Surfaces, 1992, 67, 119-138.	0.9	45
159	Effect of droplet deformation on the interactions in microemulsions. Journal of Colloid and Interface Science, 1991, 143, 157-173.	9.4	22
160	Attraction between Brownian particles of identical charge in colloid crystals. Chemical Physics Letters, 1990, 166, 452-458.	2.6	3