Ling Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7716457/publications.pdf Version: 2024-02-01

		759233	713466
21	912	12	21
papers	citations	h-index	g-index
21	21	21	1450
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PINCH-1 promotes IGF-1 receptor expression and skin cancer progression through inhibition of the GRB10-NEDD4 complex. Theranostics, 2022, 12, 2613-2630.	10.0	4
2	A mechanoresponsive PINCH-1-Notch2 interaction regulates smooth muscle differentiation of human placental mesenchymal stem cells. Stem Cells, 2021, 39, 650-668.	3.2	8
3	Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 54-69.	2.9	8
4	How signaling pathways link extracellular mechanoâ€environment to proline biosynthesis: A hypothesis. BioEssays, 2021, 43, 2100116.	2.5	4
5	PINCH-1 promotes Δ1-pyrroline-5-carboxylate synthase expression and contributes to proline metabolic reprogramming in lung adenocarcinoma. Amino Acids, 2021, 53, 1875-1890.	2.7	2
6	Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. Current Research in Cell Biology, 2021, 2, 100008.	2.4	17
7	PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nature Communications, 2020, 11, 4913.	12.8	44
8	Mitochondrial metabolism and cancer metastasis. Annals of Translational Medicine, 2020, 8, 904-904.	1.7	19
9	Mitochondrial dynamics links PINCH-1 signaling to proline metabolic reprogramming and tumor growth. Cell Stress, 2020, 5, 23-25.	3.2	2
10	Mechano-regulation of proline metabolism and cancer progression by kindlin-2. Molecular and Cellular Oncology, 2019, 6, 1596003.	0.7	7
11	A PINCH-1–Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. Journal of Cell Biology, 2019, 218, 3773-3794.	5.2	11
12	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	3.3	18
13	Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nature Communications, 2019, 10, 845.	12.8	85
14	Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharmaceutica Sinica B, 2019, 9, 167-176.	12.0	94
15	Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. Journal of Cell Biology, 2018, 217, 1431-1451.	5.2	71
16	Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors. Stem Cells Translational Medicine, 2016, 5, 1695-1706.	3.3	49
17	Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2115-2125.	3.3	54
18	Excess Integrins Cause Lung Entrapment of Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3315-3326.	3.2	88

Ling Guo

#	Article	IF	CITATIONS
19	Epigenetic changes of mesenchymal stem cells in threeâ€dimensional (3D) spheroids. Journal of Cellular and Molecular Medicine, 2014, 18, 2009-2019.	3.6	98
20	Three-Dimensional Spheroid-Cultured Mesenchymal Stem Cells Devoid of Embolism Attenuate Brain Stroke Injury After Intra-Arterial Injection. Stem Cells and Development, 2014, 23, 978-989.	2.1	55
21	Epigenetic Dysregulation in Mesenchymal Stem Cell Aging and Spontaneous Differentiation. PLoS ONE, 2011, 6, e20526.	2.5	174