Martin J Genner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7716111/publications.pdf

Version: 2024-02-01

70 papers

4,498 citations

30 h-index 62 g-index

83 all docs 83 docs citations

83 times ranked 5790 citing authors

#	Article	IF	CITATIONS
1	Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecology and Evolution, 2018, 2, 1940-1955.	7.8	358
2	Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science, 2015, 350, 1493-1498.	12.6	330
3	Age of Cichlids: New Dates for Ancient Lake Fish Radiations. Molecular Biology and Evolution, 2007, 24, 1269-1282.	8.9	268
4	Persistence of environmental DNA in marine systems. Communications Biology, 2018, 1, 185.	4.4	256
5	Long-Term Oceanographic and Ecological Research in the Western English Channel. Advances in Marine Biology, 2004, 47, 1-105.	1.4	251
6	Continental Shelf-Wide Response of a Fish Assemblage to Rapid Warming of the Sea. Current Biology, 2011, 21, 1565-1570.	3.9	208
7	Nonâ€specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 2019, 10, 1985-2001.	5.2	202
8	Low-temperature-driven early spawning migration of a temperate marine fish. Journal of Animal Ecology, 2004, 73, 333-341.	2.8	183
9	Detection of environmental change in a marine ecosystem—evidence from the western English Channel. Science of the Total Environment, 2003, 310, 245-256.	8.0	173
10	Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology, 2011, 21, R108-R109.	3.9	145
11	Timing of squid migration reflects North Atlantic climate variability. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2607-2611.	2.6	142
12	The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation. Fish and Fisheries, 2005, 6, 1-34.	5.3	135
13	Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness from Lake Malawi. Molecular Ecology, 1998, 7, 991-1001.	3.9	115
14	Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology, 2020, 30, 1572-1577.e2.	3.9	111
15	Ancient Hybridization and Phenotypic Novelty within Lake Malawi's Cichlid Fish Radiation. Molecular Biology and Evolution, 2012, 29, 195-206.	8.9	106
16	Ancestral Hybridization Facilitated Species Diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. Molecular Biology and Evolution, 2020, 37, 1100-1113.	8.9	98
17	Warming shelf seas drive the subtropicalization of European pelagic fish communities. Global Change Biology, 2015, 21, 144-153.	9 . 5	96
18	Future fish distributions constrained by depth in warming seas. Nature Climate Change, 2015, 5, 569-573.	18.8	94

#	Article	IF	CITATIONS
19	Temperature-driven phenological changes within a marine larval fish assemblage. Journal of Plankton Research, 2010, 32, 699-708.	1.8	88
20	How does the taxonomic status of allopatric populations influence species richness within African cichlid fish assemblages?. Journal of Biogeography, 2004, 31, 93-102.	3.0	65
21	Changing storminess and global capture fisheries. Nature Climate Change, 2018, 8, 655-659.	18.8	52
22	Camouflaged invasion of Lake Malawi by an Oriental gastropod. Molecular Ecology, 2004, 13, 2135-2141.	3.9	51
23	Competition-driven speciation in cichlid fish. Nature Communications, 2014, 5, 3412.	12.8	49
24	Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology, 2010, 19, 170-182.	3.9	46
25	Fisheries stocks from an ecological perspective: Disentangling ecological connectivity from genetic interchange. Fisheries Research, 2016, 179, 333-341.	1.7	46
26	Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Molecular Phylogenetics and Evolution, 2019, 136, 215-226.	2.7	43
27	Behavior-dependent <i>cis</i> regulation reveals genes and pathways associated with bower building in cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11081-E11090.	7.1	42
28	Chapter 3 Effects of Climate Change and Commercial Fishing on Atlantic Cod Gadus morhua. Advances in Marine Biology, 2009, 56, 213-273.	1.4	41
29	Secondary contact seeds phenotypic novelty in cichlid fishes. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142272.	2.6	41
30	Population genetic structure of protected allis shad (Alosa alosa) and twaite shad (Alosa fallax). Marine Biology, 2012, 159, 675-687.	1.5	39
31	Limited hybridization between introduced and Critically Endangered indigenous tilapia fishes in northern Tanzania. Hydrobiologia, 2019, 832, 257-268.	2.0	37
32	Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction. Hydrobiologia, 2019, 832, 235-253.	2.0	37
33	Evolution of a cichlid fish in a Lake Malawi satellite lake. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2249-2257.	2.6	35
34	<scp>Metaâ€Fishâ€Lib</scp> : A generalised, dynamic <scp>DNA</scp> reference library pipeline for metabarcoding of fishes. Journal of Fish Biology, 2021, 99, 1446-1454.	1.6	33
35	Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conservation Genetics, 2018, 19, 1199-1209.	1.5	32
36	A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe. Royal Society Open Science, 2014, 1, 140175.	2.4	28

#	Article	IF	CITATIONS
37	Pleistocene climate change promoted rapid diversification of aquatic invertebrates in Southeast Australia. BMC Evolutionary Biology, 2012, 12, 142.	3.2	27
38	Reproductive isolation among deep-water cichlid fishes of Lake Malawi differing in monochromatic male breeding dress. Molecular Ecology, 2006, 16, 651-662.	3.9	25
39	Newly discovered cichlid fish biodiversity threatened by hybridization with nonâ€native species. Molecular Ecology, 2021, 30, 895-911.	3.9	24
40	A century later: Long-term change of an inshore temperate marine fish assemblage. Journal of Sea Research, 2011, 65, 187-194.	1.6	23
41	Geographical ancestry of Lake Malawi's cichlid fish diversity. Biology Letters, 2015, 11, 20150232.	2.3	23
42	The genomic basis of cichlid fish adaptation within the deepwater "twilight zone―of Lake Malawi. Evolution Letters, 2017, 1, 184-198.	3.3	21
43	Nile tilapia invades the Lake Malawi catchment. African Journal of Aquatic Science, 2013, 38, 85-90.	1.1	19
44	Schistosoma species detection by environmental DNA assays in African freshwaters. PLoS Neglected Tropical Diseases, 2020, 14, e0008129.	3.0	18
45	Patterns of species range evolution in Indo-Pacific reef assemblages reveal the Coral Triangle as a net source of transoceanic diversity. Biology Letters, 2016, 12, 20160090.	2.3	17
46	Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes. Nature Communications, 2021, 12, 5870.	12.8	17
47	Adaptive Diversification of the Lateral Line System during Cichlid Fish Radiation. IScience, 2019, 16, 1-11.	4.1	15
48	Environmental DNA-based xenomonitoring for determining Schistosoma presence in tropical freshwaters. Parasites and Vectors, 2020, 13, 63.	2.5	15
49	Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika. Hydrobiologia, 2017, 791, 21-34.	2.0	14
50	Timing of population expansions within the Lake Malawi haplochromine cichlid fish radiation. Hydrobiologia, 2015, 748, 121-132.	2.0	12
51	Genetic homogeneity among breeding grounds and nursery areas of an exploited Lake Malawi cichlid fish. Freshwater Biology, 2008, 53, 1823-1831.	2.4	10
52	Population structure on breeding grounds of Lake Malawi's â€~twilight zone' cichlid fishes. Journal of Biogeography, 2010, 37, 258-269.	3.0	10
53	Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger. Scientific Reports, 2016, 6, 39395.	3.3	10
54	Evolutionary divergence in life history traits among populations of the Lake Malawi cichlid fish <i>Astatotilapia calliptera</i> . Ecology and Evolution, 2017, 7, 8488-8506.	1.9	10

#	Article	IF	CITATIONS
55	Trade-offs between physical risk and economic reward affect fishers' vulnerability to changing storminess. Global Environmental Change, 2021, 69, 102228.	7.8	9
56	Whole genome resequencing data enables a targeted SNP panel for conservation and aquaculture of Oreochromis cichlid fishes. Aquaculture, 2022, 548, 737637.	3.5	8
57	Environmental DNA captures elasmobranch diversity in a temperate marine ecosystem. Environmental DNA, 2022, 4, 1024-1038.	5.8	7
58	Preface: Advances in cichlid research: behavior, ecology, and evolutionary biology. Hydrobiologia, 2015, 748, 1-5.	2.0	6
59	Population genetic evidence for a unique resource of Nile tilapia in Lake Tanganyika, East Africa. Environmental Biology of Fishes, 2019, 102, 1107-1117.	1.0	6
60	Migratory behaviour shapes spatial genetic structure of cyprinid fishes within the Lake Malawi catchment. Freshwater Biology, 2016, 61, 1062-1074.	2.4	5
61	Staying out of the heat: how habitat use is determined by local temperature. Journal of Animal Ecology, 2016, 85, 611-613.	2.8	4
62	Preface: advances in cichlid research III: behavior, ecology, and evolutionary biology. Hydrobiologia, 2019, 832, 1-8.	2.0	4
63	Conservation genomics of the endangered Seychelles Magpieâ€Robin (Copsychus sechellarum): A unique insight into the history of a precious endemic bird. Ibis, 0, , .	1.9	4
64	Multiple colonisations of the Lake Malawi catchment by the genus Opsaridium (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution, 2017, 107, 256-265.	2.7	3
65	Evolutionary ecology of species ranges in aquatic environments. Biology Letters, 2016, 12, 20160415.	2.3	2
66	Environmental DNAâ€based methods detect the invasion front of an advancing signal crayfish population. Environmental DNA, 2022, 4, 596-607.	5.8	2
67	Revision of the African cichlid fish genus Ctenochromis (Teleostei, Cichliformes), including a description of the new genus Shuja from Lake Tanganyika and the new species Ctenochromis scatebra from northern Tanzania. European Journal of Taxonomy, 0, 819, 23-54.	0.6	2
68	Preface: Advances in cichlid research II: behavior, ecology and evolutionary biology. Hydrobiologia, 2017, 791, 1-6.	2.0	1
69	Relative growth of invasive and indigenous tilapiine cichlid fish in Tanzania. African Journal of Aquatic Science, 2020, 45, 378-381.	1.1	1
70	Preface: advances in cichlid research IV: behavior, ecology, and evolutionary biology. Hydrobiologia, 2021, 848, 3605-3612.	2.0	0