Luisa Mestroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7715300/publications.pdf

Version: 2024-02-01

199 papers 12,941 citations

25034 57 h-index 24982 109 g-index

226 all docs

 $\begin{array}{c} 226 \\ \\ \text{docs citations} \end{array}$

times ranked

226

11675 citing authors

#	Article	IF	CITATIONS
1	Truncations of Titin Causing Dilated Cardiomyopathy. New England Journal of Medicine, 2012, 366, 619-628.	27.0	1,147
2	Dilated Cardiomyopathy. Circulation Research, 2017, 121, 731-748.	4.5	527
3	Genetic Evaluation of Cardiomyopathyâ€"A Heart Failure Society of America Practice Guideline. Journal of Cardiac Failure, 2009, 15, 83-97.	1.7	523
4	2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm, 2019, 16, e301-e372.	0.7	494
5	SCN5A Mutation Associated With Dilated Cardiomyopathy, Conduction Disorder, and Arrhythmia. Circulation, 2004, 110, 2163-2167.	1.6	412
6	Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. Journal of the American College of Cardiology, 2003, 41, 771-780.	2.8	411
7	Guidelines for the study of familial dilated cardiomyopathies. European Heart Journal, 1999, 20, 93-102.	2.2	380
8	Lamin A/C Gene Mutation Associated With Dilated Cardiomyopathy With Variable Skeletal Muscle Involvement. Circulation, 2000, 101, 473-476.	1.6	311
9	Familial dilated cardiomyopathy. Journal of the American College of Cardiology, 1999, 34, 181-190.	2.8	304
10	Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms Journal of Clinical Investigation, 1992, 89, 803-815.	8.2	285
11	Genetic Variation in Titin in Arrhythmogenic Right Ventricular Cardiomyopathy–Overlap Syndromes. Circulation, 2011, 124, 876-885.	1.6	263
12	Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. European Heart Journal, 2020, 41, 1414-1429.	2.2	239
13	α-Myosin Heavy Chain. Circulation, 2005, 112, 54-59.	1.6	204
14	Drug Therapy in the Heart Transplant Recipient. Circulation, 2004, 110, 3858-3865.	1.6	200
15	SCN5A Mutations Associate With Arrhythmic Dilated Cardiomyopathy and Commonly Localize to the Voltage-Sensing Mechanism. Journal of the American College of Cardiology, 2011, 57, 2160-2168.	2.8	197
16	Carbon Nanotubes Promote Growth and Spontaneous Electrical Activity in Cultured Cardiac Myocytes. Nano Letters, 2012, 12, 1831-1838.	9.1	196
17	A New Locus for Arrhythmogenic Right Ventricular Dysplasia on the Long Arm of Chromosome 14. Genomics, 1996, 31, 193-200.	2.9	184
18	Prevalence of Desmin Mutations in Dilated Cardiomyopathy. Circulation, 2007, 115, 1244-1251.	1.6	176

#	Article	IF	CITATIONS
19	Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800079.	4.1	172
20	Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Human Mutation, 2005, 26, 566-574.	2.5	167
21	Genetic Risk of Arrhythmic Phenotypes in Patients With Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2019, 74, 1480-1490.	2.8	167
22	A Point Mutation in the 5' Splice Site of the Dystrophin Gene First Intron Responsible for X-Linked Dilated Cardiomyopathy. Human Molecular Genetics, 1996, 5, 73-79.	2.9	164
23	Danon Disease. Circulation: Heart Failure, 2014, 7, 843-849.	3.9	162
24	Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet, The, 1994, 344, 773-777.	13.7	159
25	Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics, 2018, 19, 812.	2.8	150
26	Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovascular Research, 2017, 113, 102-111.	3.8	148
27	Cardiomyopathy, familial dilated. Orphanet Journal of Rare Diseases, 2006, 1, 27.	2.7	137
28	2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy: Executive summary. Heart Rhythm, 2019, 16, e373-e407.	0.7	135
29	Filamin C Truncation Mutations Are Associated With Arrhythmogenic DilatedÂCardiomyopathy and Changes inÂthe Cell–Cell Adhesion Structures. JACC: Clinical Electrophysiology, 2018, 4, 504-514.	3.2	125
30	Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. Journal of the American College of Cardiology, 1999, 33, 1926-1934.	2.8	122
31	Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. European Heart Journal, 2011, 32, 1105-1113.	2.2	121
32	A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart Journal of Clinical Investigation, 1995, 96, 693-699.	8.2	106
33	Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes. ACS Nano, 2013, 7, 5746-5756.	14.6	105
34	Arrhythmogenic Phenotype in Dilated Cardiomyopathy: Natural History and Predictors of Lifeâ€Threatening Arrhythmias. Journal of the American Heart Association, 2015, 4, e002149.	3.7	102
35	Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation, 2013, 128, 2813-2851.	1.6	100
36	Regional Variation in <i>RBM20</i> Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005371.	3.9	96

3

#	Article	IF	Citations
37	Ventricular arrhythmias in dilated cardiomyopathy: Efficacy of amiodarone. American Heart Journal, 1987, 113, 707-715.	2.7	95
38	DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circulation Research, 2019, 124, 856-873.	4.5	95
39	Linkage of familial dilated cardiomyopathy to chromosome 9. Heart Muscle Disease Study Group. American Journal of Human Genetics, 1995, 57, 846-52.	6.2	93
40	A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2016, 3, 21.	2.4	90
41	Clinical Spectrum of <i>PRKAG2</i> Syndrome. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003121.	4.8	90
42	FLNC Gene Splice Mutations Cause DilatedÂCardiomyopathy. JACC Basic To Translational Science, 2016, 1, 344-359.	4.1	87
43	Nested polymerase chain reaction for high-sensitivity detection of enteroviral RNA in biological samples. Journal of Clinical Microbiology, 1993, 31, 1345-1349.	3.9	87
44	Genetic causes of dilated cardiomyopathy. Progress in Pediatric Cardiology, 2014, 37, 13-18.	0.4	78
45	Ophthalmic Manifestations of Danon Disease. Ophthalmology, 2006, 113, 1010-1013.	5.2	77
46	The Giant Protein Titin's Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Frontiers in Physiology, 2019, 10, 1436.	2.8	77
47	Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart, 1997, 78, 608-612.	2.9	76
48	Low frequency of detection by nested polymerase chain reaction of enterovirus ribonucleic acid in endomyocardial tissue of patients with idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology, 1994, 24, 1033-1040.	2.8	74
49	Utility of Cardiac Magnetic Resonance Imaging to Differentiate Cardiac Sarcoidosis from Arrhythmogenic Right Ventricular Cardiomyopathy. American Journal of Cardiology, 2012, 110, 575-579.	1.6	73
50	Clinical and pathologic study of familial dilated cardiomyopathy. American Journal of Cardiology, 1990, 65, 1449-1453.	1.6	72
51	Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated With Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circulation Research, 2019, 124, 1198-1213.	4.5	72
52	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
53	Danon disease – dysregulation of autophagy in a multisystem disorder with cardiomyopathy. Journal of Cell Science, 2016, 129, 2135-43.	2.0	69
54	Decreased Levels of BAG3 in a Family With a Rare Variant and in Idiopathic Dilated Cardiomyopathy. Journal of Cellular Physiology, 2014, 229, 1697-1702.	4.1	68

#	Article	IF	Citations
55	Danon disease presenting with dilated cardiomyopathy and a complex phenotype. Journal of Human Genetics, 2007, 52, 830-835.	2.3	65
56	Role of Titin Missense Variants in Dilated Cardiomyopathy. Journal of the American Heart Association, 2015, 4, .	3.7	64
57	Association between mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. Heart, 2017, 103, 1704-1710.	2.9	64
58	Cardiomyopathy and carnitine deficiency. Molecular Genetics and Metabolism, 2008, 94, 162-166.	1.1	60
59	Sudden Death Associated With Danon Disease in Women. American Journal of Cardiology, 2012, 109, 406-411.	1.6	58
60	3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1530-1537.	4.6	57
61	Diagnosis, prevalence, and screening of familial dilated cardiomyopathy. Expert Opinion on Orphan Drugs, 2015, 3, 869-876.	0.8	54
62	Contemporary survival trends and aetiological characterization in nonâ€ischaemic dilated cardiomyopathy. European Journal of Heart Failure, 2020, 22, 1111-1121.	7.1	54
63	Familial dilated cardiomyopathy. Heart, 1994, 72, S35-S41.	2.9	52
64	Poor Prognosis of Rare Sarcomeric Gene Variants in Patients with Dilated Cardiomyopathy. Clinical and Translational Science, 2013, 6, 424-428.	3.1	52
65	Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31645-31656.	8.0	52
66	The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy. European Journal of Heart Failure, 2020, 22, 1097-1107.	7.1	52
67	Prognostic impact of familial screening in dilated cardiomyopathy. European Journal of Heart Failure, 2010, 12, 922-927.	7.1	51
68	Improving cardiac myocytes performance by carbon nanotubes platformsâ€. Frontiers in Physiology, 2013, 4, 239.	2.8	51
69	Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nature Medicine, 2021, 27, 1818-1824.	30.7	51
70	The Burden of Early Phenotypes and the Influence of Wall Thickness in Hypertrophic Cardiomyopathy Mutation Carriers. JAMA Cardiology, 2017, 2, 419.	6.1	50
71	Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18671-18680.	8.0	47
72	Are Nonsustained Ventricular Tachycardias Predictive of Major Arrhythmias in Patients with Dilated Cardiomyopathy on Optimal Medical Treatment?. PACE - Pacing and Clinical Electrophysiology, 2008, 31, 290-299.	1.2	46

#	Article	IF	Citations
73	The Cardiomyopathy Lamin A/C D192G Mutation Disrupts Whole-Cell Biomechanics in Cardiomyocytes as Measured by Atomic Force Microscopy Loading-Unloading Curve Analysis. Scientific Reports, 2015, 5, 13388.	3.3	44
74	<i>FLNC</i> truncations cause arrhythmogenic right ventricular cardiomyopathy. Journal of Medical Genetics, 2020, 57, 254-257.	3.2	43
75	Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation, 2021, 144, 1600-1611.	1.6	43
76	Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. Journal of Clinical Investigation, 2019, 129, 3171-3184.	8.2	42
77	Titin and desmosomal genes in the natural history of arrhythmogenic right ventricular cardiomyopathy. Journal of Medical Genetics, 2014, 51, 669-676.	3.2	41
78	Natural History of Dilated Cardiomyopathy in Children. Journal of the American Heart Association, 2016, 5, .	3.7	39
79	Biomimetic Polymers for Cardiac Tissue Engineering. Biomacromolecules, 2016, 17, 1593-1601.	5.4	37
80	Nanomaterials for Cardiac Tissue Engineering. Molecules, 2020, 25, 5189.	3.8	37
81	Induction of ADAM10 by Radiation Therapy Drives Fibrosis, Resistance, and Epithelial-to-Mesenchyal Transition in Pancreatic Cancer. Cancer Research, 2021, 81, 3255-3269.	0.9	37
82	Arrhythmogenic right ventricular cardiomyopathy: From genetics to diagnostic and therapeutic challenges. World Journal of Cardiology, 2014, 6, 1234.	1.5	36
83	Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing. Expert Review of Molecular Diagnostics, 2004, 4, 99-113.	3.1	34
84	Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovascular Research, 2018, 114, 846-857.	3.8	34
85	Genetics of Dilated Cardiomyopathy: Clinical Implications. Current Cardiology Reports, 2018, 20, 83.	2.9	33
86	Genetics and genetic testing of dilated cardiomyopathy: a new perspective. Discovery Medicine, 2013, 15, 43-9.	0.5	31
87	Arrhythmias in dilated cardiomyopathy. Postgraduate Medical Journal, 1986, 62, 593-597.	1.8	30
88	Molecular genetics of dilated cardiomyopathy. Current Opinion in Cardiology, 1997, 12, 303-309.	1.8	30
89	Atomic force microscopy of 3T3 and SW-13 cell lines: An investigation of cell elasticity changes due to fixation. Materials Science and Engineering C, 2013, 33, 3303-3308.	7.3	30
90	Whole Exome Sequencing Identifies a Troponin T Mutation Hot Spot in Familial Dilated Cardiomyopathy. PLoS ONE, 2013, 8, e78104.	2.5	29

#	Article	IF	Citations
91	Pharmacogenetic effect of an endothelin-1 haplotype on response to bucindolol therapy in chronic heart failure. Pharmacogenetics and Genomics, 2009, 19, 35-43.	1.5	28
92	AFM single-cell force spectroscopy links altered nuclear and cytoskeletal mechanics to defective cell adhesion in cardiac myocytes with a nuclear lamin mutation. Nucleus, 2015, 6, 394-407.	2.2	27
93	Obscurin Variants inÂPatients With LeftÂVentricular Noncompaction. Journal of the American College of Cardiology, 2016, 68, 2237-2238.	2.8	26
94	Carbon Nanotube Facilitation of Myocardial Ablation with Radiofrequency Energy. Journal of Cardiovascular Electrophysiology, 2014, 25, 1385-1390.	1.7	25
95	Early Arrhythmic Events in IdiopathicÂDilated Cardiomyopathy. JACC: Clinical Electrophysiology, 2016, 2, 535-543.	3.2	24
96	Lamin A/C Gene and the Heart. Journal of the American College of Cardiology, 2008, 52, 1261-1262.	2.8	23
97	Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation. Materials Science and Engineering C, 2014, 40, 427-434.	7.3	23
98	Risk Stratification in Arrhythmic Right Ventricular Cardiomyopathy Without Implantable Cardioverter-Defibrillators. JACC: Clinical Electrophysiology, 2016, 2, 558-564.	3.2	23
99	Correlation between histomorphometric findings on endomyocardial biopsy and clinical findings in idiopathic dilated cardiomyopathy. American Journal of Cardiology, 1989, 64, 504-506.	1.6	22
100	Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart, 2017, 4, e000615.	2.3	22
101	Genetics of dilated cardiomyopathy. Current Opinion in Cardiology, 2021, 36, 288-294.	1.8	21
102	Cardiac Hypertrophy, Accessory Pathway, andÂConduction System Disease in an Adolescent. Journal of the American College of Cardiology, 2013, 62, e17.	2.8	19
103	High-throughput Genotyping Robot-assisted Method for Mutation Detection in Patients With Hypertrophic Cardiomyopathy. Diagnostic Molecular Pathology, 2011, 20, 175-179.	2.1	18
104	Danon disease for the cardiologist: case report and review of the literature. Journal of Community Hospital Internal Medicine Perspectives, 2017, 7, 107-114.	0.8	18
105	Knock Down of Plakophillin 2 Dysregulates Adhesion Pathway through Upregulation of miR200b and Alters the Mechanical Properties in Cardiac Cells. Cells, 2019, 8, 1639.	4.1	18
106	The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy. Current Cardiology Reports, 2021, 23, 121.	2.9	18
107	Association of Titin Variations With Late-Onset Dilated Cardiomyopathy. JAMA Cardiology, 2022, 7, 371.	6.1	18
108	The cell-stretcher: A novel device for the mechanical stimulation of cell populations. Review of Scientific Instruments, 2016, 87, 084301.	1.3	17

#	Article	IF	CITATIONS
109	Lamin A/C Cardiomyopathy: Implications for Treatment. Current Cardiology Reports, 2019, 21, 160.	2.9	17
110	Transcriptome signature of ventricular arrhythmia in dilated cardiomyopathy reveals increased fibrosis and activated TP53. Journal of Molecular and Cellular Cardiology, 2020, 139, 124-134.	1.9	17
111	Familial Dilated Cardiomyopathy. Circulation, 2003, 108, e118-21.	1.6	16
112	Improving the appropriateness of sudden arrhythmic death primary prevention by implantable cardioverter-defibrillator therapy in patients with low left ventricular ejection fraction. Point of view. Journal of Cardiovascular Medicine, 2016, 17, 245-255.	1.5	16
113	In Hypertrophic Cardiomyopathy, the Spatial Peaks <scp>QRS</scp> †Angle Identifies Those With Sustained Ventricular Arrhythmias. Clinical Cardiology, 2016, 39, 459-463.	1.8	16
114	Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. Journal of Clinical Medicine, 2020, 9, 2770.	2.4	16
115	Estimating the frequency of familial dilated cardiomyopathy in the presence of misclassification errors. Journal of Applied Statistics, 2001, 28, 53-62.	1.3	14
116	Arrhythmogenic Cardiomyopathy. Circulation, 2018, 137, 1611-1613.	1.6	14
117	Genetic Infiltrative Cardiomyopathies. Heart Failure Clinics, 2018, 14, 215-224.	2.1	14
118	Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon, 2020, 6, e03175.	3.2	14
119	Easy fabrication of aligned PLLA nanofibers-based 2D scaffolds suitable for cell contact guidance studies. Materials Science and Engineering C, 2016, 62, 301-306.	7.3	13
120	The genetic architecture of Plakophilin 2 cardiomyopathy. Genetics in Medicine, 2021, 23, 1961-1968.	2.4	13
121	Antiarrhythmic therapy and risk of cumulative ventricular arrhythmias in arrhythmogenic right ventricle cardiomyopathy. International Journal of Cardiology, 2021, 334, 58-64.	1.7	13
122	Pharmacogenomics, personalized medicine, and heart failure. Discovery Medicine, 2011, 11, 551-61.	0.5	13
123	Danon Disease-Associated LAMP-2 Deficiency Drives Metabolic Signature Indicative of Mitochondrial Aging and Fibrosis in Cardiac Tissue and hiPSC-Derived Cardiomyocytes. Journal of Clinical Medicine, 2020, 9, 2457.	2.4	12
124	Mortality risk in chronic Chagas cardiomyopathy: a systematic review and metaâ€analysis. ESC Heart Failure, 2021, 8, 5466-5481.	3.1	12
125	Activation of PDGFRA signaling contributes to filamin C–related arrhythmogenic cardiomyopathy. Science Advances, 2022, 8, eabk0052.	10.3	12
126	ADVANCES IN MOLECULAR GENETICS OF DILATED CARDIOMYOPATHY. Cardiology Clinics, 1998, 16, 611-621.	2,2	11

#	Article	IF	Citations
127	Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 3700.	4.1	11
128	Ventricular Arrhythmias in Congestive Cardiomyopathy. New England Journal of Medicine, 1983, 309, 377-378.	27.0	10
129	Molecular genetics of dilated cardiomyopathies. European Heart Journal, 1995, 16, 5-9.	2.2	10
130	Analysis of Genetic Variations of Lamin A/C Gene (LMNA) by Denaturing High-Performance Liquid Chromatography. Journal of Biomolecular Screening, 2004, 9, 625-628.	2.6	10
131	The challenge of cardiomyopathies in 2007. Journal of Cardiovascular Medicine, 2008, 9, 545-554.	1.5	10
132	Baseline Characteristics of the VANISH Cohort. Circulation: Heart Failure, 2019, 12, e006231.	3.9	10
133	Heart failure and personalized medicine. Journal of Cardiovascular Medicine, 2011, 12, 6-12.	1.5	10
134	Parental origin of the X chromosome in a patient with a Robertsonian translocation and Turner's syndrome Journal of Medical Genetics, 1994, 31, 255-256.	3.2	9
135	Genetics of dilated cardiomyopathy conduction disease. Progress in Pediatric Cardiology, 2007, 24, 3-13.	0.4	9
136	Hearing the Noise. Journal of the American College of Cardiology, 2011, 57, 2328-2329.	2.8	9
137	Molecular and Cellular Mechanisms in Heart Failure. , 2018, , 3-19.		9
138	Early Lethality Due to a Novel Desmoplakin Variant Causing Infantile Epidermolysis Bullosa Simplex With Fragile Skin, Aplasia Cutis Congenita, and Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e002800.	3.6	9
139	Molecular genetics of dilated cardiomyopathy. Herz, 1994, 19, 97-104.	1.1	9
140	Absence of linkage between idiopathic dilated cardiomyopathy and candidate genes involved in the immune function in a large Italian pedigree Journal of Medical Genetics, 1994, 31, 766-771.	3.2	8
141	Cellular biomechanics impairment in keratinocytes is associated with a C-terminal truncated desmoplakin: An atomic force microscopy investigation. Micron, 2018, 106, 27-33.	2.2	8
142	Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. International Journal of Molecular Sciences, 2020, 21, 5865.	4.1	7
143	The response to cardiac resynchronization therapy in <scp>LMNA</scp> cardiomyopathy. European Journal of Heart Failure, 2022, 24, 685-693.	7.1	7
144	Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. Journal of Molecular and Cellular Cardiology, 2022, 169, 84-95.	1.9	7

#	Article	IF	Citations
145	Pharmacogenetics of heart failure. Current Opinion in Cardiology, 2014, 29, 227-234.	1.8	6
146	Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: An atomic force microscopy study. Materials Science and Engineering C, 2015, 49, 217-224.	7.3	6
147	Apical Sparing Strain Pattern in Danon Disease. JACC: Cardiovascular Imaging, 2020, 13, 2689-2691.	5.3	6
148	Viscoelastic behavior of cardiomyocytes carrying LMNA mutations. Biorheology, 2020, 57, 1-14.	0.4	6
149	Prevalence and evolution of right ventricular dysfunction among different genetic backgrounds in dilated cardiomyopathy. Canadian Journal of Cardiology, 2021, 37, 1743-1750.	1.7	6
150	Epidemiology of cardiac actin gene mutations in dilated cardiomyopathy. Journal of Cardiac Failure, 1999, 5, 23.	1.7	5
151	Compromised Biomechanical Properties, Cell–Cell Adhesion and Nanotubes Communication in Cardiac Fibroblasts Carrying the Lamin A/C D192G Mutation. International Journal of Molecular Sciences, 2021, 22, 9193.	4.1	5
152	Myocardial Strain and Association With Clinical Outcomes in Danon Disease: A Model for Monitoring Progression of Genetic Cardiomyopathies. Journal of the American Heart Association, 2021, 10, e022544.	3.7	5
153	Current perspective new insights into the molecular basis of familial dilated cardiomyopathy. Italian Heart Journal: Official Journal of the Italian Federation of Cardiology, 2001, 2, 280-6.	0.1	5
154	Dilated cardiomyopathy: a genetic approach Heart, 1997, 77, 185-188.	2.9	4
155	Tafazzin Gene Mutations Are Uncommon Causes of Dilated Cardiomyopathy in Adults. Neurology International, 2011, 1, e4.	0.5	4
156	Family Members of Patients With ARVC. Journal of the American College of Cardiology, 2014, 64, 302-303.	2.8	4
157	Pediatric Cardiomyopathy. Journal of the American College of Cardiology, 2016, 67, 526-528.	2.8	4
158	Experiences with Diagnosis and Treatment of Chagas Disease at a United States Teaching Hospitalâ€"Clinical Features of Patients with Positive Screening Serologic Testing. Tropical Medicine and Infectious Disease, 2021, 6, 93.	2.3	4
159	Right precordial-directed electrocardiographical markers identify arrhythmogenic right ventricular cardiomyopathy in the absence of conventional depolarization or repolarization abnormalities. BMC Cardiovascular Disorders, 2017, 17, 261.	1.7	3
160	Genetics of Dilated Cardiomyopathy: Current Knowledge and Future Perspectives. , 2019, , 45-69.		3
161	Historical Terminology, Classifications, and Present Definition of DCM. , 2019, , 1-9.		3
162	Microfabricated cantilevers for parallelized cell-cell adhesion measurements. European Biophysics Journal, $2021,1$.	2.2	3

#	Article	IF	CITATIONS
163	Idiopathic left ventricular aneurysm: a clinical and pathological study of a new entity in the spectrum of cardiomyopathies. Postgraduate Medical Journal, 1994, 70 Suppl 1, S13-20.	1.8	3
164	Inhibition of Proto-Oncogene c-Src Tyrosine Kinase. Journal of the American College of Cardiology, 2014, 63, 935-937.	2.8	2
165	Understanding the role of titin in dilated cardiomyopathy. International Journal of Cardiology, 2020, 316, 186-187.	1.7	2
166	Mechanisms and Insights for the Development of Heart Failure Associated with Cancer Therapy. Children, 2021, 8, 829.	1.5	2
167	Clinical and genetic features of arrhythmogenic cardiomyopathy: Diagnosis, management and the heart failure perspective. Progress in Pediatric Cardiology, 2021, 63, 101459.	0.4	2
168	AFM macro-probes to investigate whole 3D cardiac spheroids. Micro and Nano Engineering, 2022, 15, 100134.	2.9	2
169	Abstract 12210: Long-Term Efficacy and Safety of ARRY-371797 (PF-0765803) in an Open-Label Rollover Study in Patients With Dilated Cardiomyopathy Due to a Lamin A/C Gene Mutation. Circulation, 2021, 144, .	1.6	2
170	Unraveling Missing Genes and Missing Inheritance in Arrhythmogenic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2017, 10 , .	4.8	1
171	Diseases of the Nuclear Membrane. , 2017, , 233-248.		1
172	The S-wave angle identifies arrhythmogenic right ventricular cardiomyopathy in patients with electrocardiographically concealed disease phenotype. Journal of Electrocardiology, 2018, 51, 1003-1008.	0.9	1
173	Genotype-phenotype correlations in ARVC: Toward a precision medicine approach. International Journal of Cardiology, 2019, 286, 115-116.	1.7	1
174	Fruit and Vegetable Concentrate Supplementation and Cardiovascular Health: A Systematic Review from a Public Health Perspective. Journal of Clinical Medicine, 2019, 8, 1914.	2.4	1
175	An <i>LMNA</i> synonymous variant associated with severe dilated cardiomyopathy: Case report. American Journal of Medical Genetics, Part A, 2022, 188, 600-605.	1.2	1
176	Natural History of Idiopathic Dilated Cardiomyopathy. , 1993, , 26-42.		1
177	Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). Respiratory Medicine, 2015, , 337-360.	0.1	0
178	Association of Phenotype andÂGenotype in the Diagnosis and Prognosis of ARVC/D in the Adult Population. , 2016, , 89-103.		0
179	Modeling Cardiomyopathy and Arrhythmias in Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Genomic and Precision Medicine, 2018, 11, e002088.	3.6	0
180	Precision medicine in laminopathies: insights from the REDLAMINA registry. Revista Espanola De Cardiologia (English Ed), 2021, 74, 208-209.	0.6	0

#	Article	IF	CITATIONS
181	Medicina de precisión aplicada a laminopatÃas: enseñanzas del registro REDLAMINA. Revista Espanola De Cardiologia, 2021, 74, 208-209.	1.2	O
182	The Arrhythmic Phenotype in Cardiomyopathy. Heart Failure Clinics, 2021, 18, 101-113.	2.1	0
183	Cardiomyopathy: Genetics in muscular dystrophies. , 2000, , 81-84.		O
184	Dilated Cardiomyopathy and Arrhythmogenic Right Ventricular Dysplasia: From Gene to Phenotype. Developments in Cardiovascular Medicine, 2000, , 19-26.	0.1	0
185	149 Familial dilated cardiomyopathy: an international registry. European Journal of Heart Failure, Supplement, 2003, 2, 25-26.	0.0	O
186	Is the long term outcome of familial dilated cardiomyopathy different with respect to sporadic forms. European Journal of Heart Failure, Supplement, 2008, 7, 40-40.	0.0	0
187	The Role of Clinical Observation: Red Flag 7 â€" Syndromic and Multi-system Cardiomyopathies. , 2013, , 73-111.		0
188	Clinical Genetic Testing in Cardiomyopathies. , 2013, , 119-124.		0
189	Family History. , 2013, , 19-24.		0
190	Arrhythmogenic Right Ventricular Cardiomyopathy: Clinical Assessment and Differential Diagnosis., 2014, , 139-149.		0
191	Genetics: Genotype/Phenotype Correlations in Cardiomyopathies. , 2014, , 13-24.		0
192	Dilated Cardiomyopathy: Does Etiological Heterogeneity Portend Clinical Heterogeneity?., 1998,, 160-170.		0
193	The Classification of Cardiomyopathies. , 1998, , 3-13.		0
194	Cardiac disorders. , 2020, , 109-125.		0
195	Abstract 15707: Histone Deacetylase Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2020, 142, .	1.6	0
196	Vasodilators in left ventricular failure. Giornale Italiano Di Cardiologia, 1984, 14, 685-93.	0.2	0
197	125â€∫Sex differences in myocarditis natural history. European Heart Journal Supplements, 2021, 23, .	0.1	0
198	$382 \hat{a} \in f$ Clinical manifestation and prognosis of different cardiomyopathies on the base of genetic background (GEN-PHEN). European Heart Journal Supplements, 2021, 23, .	0.1	0

#	Article	IF	CITATIONS
199	Abstract 19804: The Spatial QRS-T Angle Predicts Ventricular Arrhythmias in Patients With Hypertrophic Cardiomyopathy. Circulation, 2015, 132, .	1.6	0