Michael Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7715180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. Cardiovascular Drugs and Therapy, 2022, 36, 1-13.	2.6	28
2	Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 39-55.	4.3	17
3	ND3 Cys39 in complex I is exposed during mitochondrial respiration. Cell Chemical Biology, 2022, 29, 636-649.e14.	5.2	24
4	Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metabolism, 2022, 34, 140-157.e8.	16.2	27
5	Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. IScience, 2022, 25, 103827.	4.1	51
6	Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 2022, 23, 499-515.	37.0	469
7	MitoQ Inhibits Human Breast Cancer Cell Migration, Invasion and Clonogenicity. Cancers, 2022, 14, 1516.	3.7	15
8	MitoQ Prevents Human Breast Cancer Recurrence and Lung Metastasis in Mice. Cancers, 2022, 14, 1488.	3.7	11
9	Silver Clusters of Five Atoms as Highly Selective Antitumoral Agents Through Irreversible Oxidation of Thiols. Advanced Functional Materials, 2022, 32, .	14.9	7
10	Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nature Chemical Biology, 2022, 18, 461-469.	8.0	38
11	Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science, 2022, 376, .	12.6	52
12	Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury. Redox Biology, 2022, 54, 102368.	9.0	9
13	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	11.9	356
14	Uncovering the source of mitochondrial superoxide in pro-inflammatory macrophages: Insights from immunometabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166481.	3.8	3
15	Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovascular Research, 2021, 117, 1188-1201.	3.8	59
16	Mitochondria as Therapeutic Targets in Transplantation. Trends in Molecular Medicine, 2021, 27, 185-198.	6.7	45
17	Active RNA interference in mitochondria. Cell Research, 2021, 31, 219-228.	12.0	32
18	Nanoparticleâ€encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB Journal, 2021, 35, e21338.	0.5	17

#	Article	IF	CITATIONS
19	Structural basis for a complex I mutation that blocks pathological ROS production. Nature Communications, 2021, 12, 707.	12.8	71
20	Tetra-arylborate lipophilic anions as targeting groups. Chemical Communications, 2021, 57, 3147-3150.	4.1	1
21	Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. Journal of Biological Chemistry, 2021, 296, 100169.	3.4	25
22	Photoactivated release of membrane impermeant sulfonates inside cells. Chemical Communications, 2021, 57, 3917-3920.	4.1	1
23	Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 2021, 371, 839-846.	12.6	170
24	Energy Metabolites as Biomarkers in Ischemic and Dilated Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 1999.	4.1	20
25	Ex vivo normothermic perfusion of isolated segmental porcine bowel: a novel functional model of the small intestine. BJS Open, 2021, 5, .	1.7	10
26	Mitochondria antioxidant protection against cardiovascular dysfunction programmed by earlyâ€onset gestational hypoxia. FASEB Journal, 2021, 35, e21446.	0.5	11
27	Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoCamide. Nutrients, 2021, 13, 1457.	4.1	3
28	Abrogating mitochondrial ROS in neurons or astrocytes reveals cell-specific impact on mouse behaviour. Redox Biology, 2021, 41, 101917.	9.0	8
29	Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. PLoS Biology, 2021, 19, e3001252.	5.6	22
30	Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia–reperfusion injury in kidney transplantation models. British Journal of Surgery, 2021, 108, 1072-1081.	0.3	15
31	Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets. Scientific Reports, 2021, 11, 10418.	3.3	8
32	Effective therapeutic strategies in a preclinical mouse model of Charcot–Marie–Tooth disease. Human Molecular Genetics, 2021, 30, 2441-2455.	2.9	5
33	Cardioprotective mechanisms of mitochondria-targeted S-nitrosating agent and adenosine triphosphate-sensitive potassium channel opener are mutually exclusive. JTCVS Open, 2021, 8, 338-354.	0.5	2
34	Insights on Targeting Small Molecules to the Mitochondrial Matrix and the Preparation of MitoB and MitoP as Exomarkers of Mitochondrial Hydrogen Peroxide. Methods in Molecular Biology, 2021, 2275, 87-117.	0.9	2
35	Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Human Reproduction, 2021, 36, 771-784.	0.9	54
36	Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension, 2021, 78, 1818-1828.	2.7	2

#	Article	IF	CITATIONS
37	Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. ELife, 2021, 10, .	6.0	44
38	Phosphorus spectroscopy in acute TBI demonstrates metabolic changes that relate to outcome in the presence of normal structural MRI. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 67-84.	4.3	18
39	Mitochondrial ROS production during ischemia-reperfusion injury. , 2020, , 513-538.		4
40	The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Free Radical Biology and Medicine, 2020, 146, 372-382.	2.9	36
41	A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radical Biology and Medicine, 2020, 147, 37-47.	2.9	32
42	Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2020, 34, 823-834.	2.6	9
43	Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. Redox Biology, 2020, 36, 101640.	9.0	42
44	Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. Communications Biology, 2020, 3, 692.	4.4	25
45	Nucleotide-binding sites can enhance N-acylation of nearby protein lysine residues. Scientific Reports, 2020, 10, 20254.	3.3	8
46	Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker. Molecular Pharmaceutics, 2020, 17, 3526-3540.	4.6	14
47	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19, 609-633.	46.4	441
48	Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677.	0.5	8
49	mtDNA mutations help support cancer cells. Nature Cancer, 2020, 1, 941-942.	13.2	6
50	Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation. Frontiers in Chemistry, 2020, 8, 783.	3.6	4
51	Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Science Advances, 2020, 6, eabb1929.	10.3	41
52	Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discovery, 2020, 6, 132.	4.7	29
53	Rapamycinâ€mediated mouse lifespan extension: Lateâ€life dosage regimes with sexâ€specific effects. Aging Cell, 2020, 19, e13269.	6.7	49
54	Facultative protein selenation regulates redox sensitivity, adipose tissue thermogenesis, and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10789-10796.	7.1	30

#	Article	IF	CITATIONS
55	Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biology, 2020, 34, 101558.	9.0	62
56	How should we talk about metabolism?. Nature Immunology, 2020, 21, 713-715.	14.5	13
57	Stable mitochondrial CICIII2 supercomplex interactions in reptiles compared to homeothermic vertebrates. Journal of Experimental Biology, 2020, 223, .	1.7	17
58	Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2020, 154, 105-118.	2.9	12
59	Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15160-15171.	7.1	90
60	Reply to: In vivo quantification of mitochondrial membrane potential. Nature, 2020, 583, E19-E20.	27.8	2
61	Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16424-16430.	7.1	44
62	Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biology, 2020, 36, 101606.	9.0	59
63	The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radical Biology and Medicine, 2020, 152, 797-809.	2.9	19
64	Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clinical Science, 2020, 134, 1491-1519.	4.3	31
65	Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 3534-3548.	3.6	15
66	Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- <i>lpr</i> mice. Lupus Science and Medicine, 2020, 7, e000387.	2.7	54
67	Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genetics, 2020, 16, e1009083.	3.5	43
68	Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatric Nephrology, 2019, 34, 1167-1174.	1.7	56
69	Rerouting metabolism to activate macrophages. Nature Immunology, 2019, 20, 1097-1099.	14.5	13
70	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery, 2019, 9, 1268-1287.	9.4	119
71	The Mitochondria-Targeted Methylglyoxal Sequestering Compound, MitoGamide, Is Cardioprotective in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2019, 33, 669-674.	2.6	15
72	Malonylation of GAPDH is an inflammatory signal in macrophages. Nature Communications, 2019, 10, 338.	12.8	129

#	Article	IF	CITATIONS
73	Selective Disruption of Mitochondrial Thiol Redox State in Cells and InÂVivo. Cell Chemical Biology, 2019, 26, 449-461.e8.	5.2	41
74	Immunological Synapse Formation Induces Mitochondrial Clustering and Mitophagy in Dendritic Cells. Journal of Immunology, 2019, 202, 1715-1723.	0.8	9
75	The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1192-1200.	3.8	21
76	Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nature Metabolism, 2019, 1, 519-531.	11.9	88
77	Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Research in Cardiology, 2019, 114, 18.	5.9	55
78	Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radical Biology and Medicine, 2019, 134, 678-687.	2.9	36
79	Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury. Scientific Reports, 2019, 9, 2850.	3.3	52
80	Species and tissue specific differences in ROS metabolism to hypoxia- and hyperoxia-recovery exposure in marine sculpins. Journal of Experimental Biology, 2019, 222, .	1.7	9
81	Detection of changes in mitochondrial hydrogen sulfide <i>i n vivo</i> in the fish model <i>Poecilia mexicana</i> (Poeciliidae). Biology Open, 2019, 8, .	1.2	5
82	Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nature Metabolism, 2019, 1, 966-974.	11.9	103
83	APOPT 1/ COA 8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Molecular Medicine, 2019, 11, .	6.9	19
84	Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Redox Biology, 2019, 20, 544-555.	9.0	43
85	Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism, 2019, 1, 16-33.	11.9	260
86	Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radical Biology and Medicine, 2019, 130, 318-327.	2.9	32
87	The Mitochondria-Targeted Antioxidant MitoQ Modulates Mitochondrial Function and Endoplasmic Reticulum Stress in Pancreatic Î ² Cells Exposed to Hyperglycaemia. Cellular Physiology and Biochemistry, 2019, 52, 186-197.	1.6	35
88	Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death and Differentiation, 2018, 25, 1671-1685.	11.2	54
89	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell, 2018, 22, 355-368.e13.	11.1	216
90	Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. Journal of Experimental Biology, 2018, 221, .	1.7	39

#	Article	IF	CITATIONS
91	Signedâ€For Delivery in the Mitochondrial Matrix: Confirming Uptake into Mitochondria. Small Methods, 2018, 2, 1700297.	8.6	5
92	A Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain. Journal of Neurotrauma, 2018, 35, 2025-2035.	3.4	25
93	Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults. Hypertension, 2018, 71, 1056-1063.	2.7	280
94	Metabolomic Profiling in Acute ST‣egment–Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia–Reperfusion Injury. Journal of the American Heart Association, 2018, 7, .	3.7	66
95	MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radical Biology and Medicine, 2018, 117, 18-29.	2.9	100
96	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2018, 51, 1701024.	6.7	64
97	Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radical Biology and Medicine, 2018, 117, 180-190.	2.9	21
98	Glycolysis promotes caspase-3 activation in lipid rafts in T cells. Cell Death and Disease, 2018, 9, 62.	6.3	15
99	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.	3.4	110
100	Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biology, 2018, 16, 344-351.	9.0	43
101	ltaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556, 113-117.	27.8	1,115
102	Pro-fluorescent mitochondria-targeted real-time responsive redox probes synthesised from carboxy isoindoline nitroxides: Sensitive probes of mitochondrial redox status in cells. Free Radical Biology and Medicine, 2018, 128, 97-110.	2.9	14
103	Ageâ€related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Acta Physiologica, 2018, 222, e12893.	3.8	52
104	Mitochondriaâ€ŧargeted antioxidant Mito <scp>Q</scp> reduced renal damage caused by ischemiaâ€reperfusion injury in rodent kidneys: Longitudinal observations of <scp>T</scp> ₂ â€weighted imaging and dynamic contrastâ€enhanced <scp>MRI</scp> . Magnetic Resonance in Medicine, 2018, 79, 1559-1567.	3.0	30
105	Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Journal of Applied Physiology, 2018, 124, 1194-1202.	2.5	86
106	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
107	Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. American Journal of Pathology, 2018, 188, 2704-2716.	3.8	65
108	Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 2018, 17, 865-886.	46.4	508

#	Article	IF	CITATIONS
109	Metabolic control of ferroptosis in cancer. Nature Cell Biology, 2018, 20, 1104-1105.	10.3	27
110	Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. Journal of Biological Chemistry, 2018, 293, 17208-17217.	3.4	207
111	Control of mitochondrial superoxide production by reverse electron transport at complex I. Journal of Biological Chemistry, 2018, 293, 9869-9879.	3.4	204
112	MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2859-2870.	3.8	77
113	Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury. Free Radical Biology and Medicine, 2018, 124, 517-524.	2.9	45
114	Newly made mitochondrial DNA drives inflammation. Nature, 2018, 560, 176-177.	27.8	17
115	Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death and Differentiation, 2018, 25, 1921-1937.	11.2	106
116	The effect of succinate on brain NADH/NAD+ redox state and high energy phosphate metabolism in acute traumatic brain injury. Scientific Reports, 2018, 8, 11140.	3.3	43
117	Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560, 102-106.	27.8	380
118	Restoring mitochondrial <scp>DNA</scp> copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell, 2018, 17, e12773.	6.7	90
119	The Causes and Consequences of Nonenzymatic Protein Acylation. Trends in Biochemical Sciences, 2018, 43, 921-932.	7.5	31
120	Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species. Cell Reports, 2018, 24, 1445-1455.	6.4	27
121	Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radical Biology and Medicine, 2018, 126, 322-333.	2.9	22
122	Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation. Journal of Molecular and Cellular Cardiology, 2018, 123, 88-91.	1.9	38
123	Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. Cell, 2018, 174, 780-784.	28.9	237
124	Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. ELife, 2018, 7, .	6.0	44
125	Mitochondrialâ€Targeted Antioxidant (MitoQ) Improves Vascular Function in Healthy Late Middleâ€Aged and Older Adults. FASEB Journal, 2018, 32, 845.8.	0.5	1
126	Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus, 2017, 7, 20160151.	3.0	11

#	Article	IF	CITATIONS
127	Chemical biology of mitochondria. Interface Focus, 2017, 7, 20170003.	3.0	Ο
128	Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II. Cell Reports, 2017, 18, 2105-2112.	6.4	90
129	Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Reports, 2017, 19, 1202-1213.	6.4	146
130	ClickIn: a flexible protocol for quantifying mitochondrial uptake of nucleobase derivatives. Interface Focus, 2017, 7, 20160117.	3.0	4
131	UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7981-7986.	7.1	136
132	Mitochondriaâ€ŧargeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver International, 2017, 37, 1002-1012.	3.9	42
133	Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. Biochemical Journal, 2017, 474, 2489-2508.	3.7	65
134	Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA. Journal of Biological Chemistry, 2017, 292, 7761-7773.	3.4	34
135	Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2322-2332.	2.4	120
136	cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation, 2017, 136, 2337-2355.	1.6	124
137	MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chemical Biology, 2017, 24, 1285-1298.e12.	5.2	69
138	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Scientific Reports, 2017, 7, 9079.	3.3	76
139	Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia. Journal of Biological Chemistry, 2017, 292, 14486-14495.	3.4	34
140	Click-PEGylation – A mobility shift approach to assess the redox state of cysteines in candidate proteins. Free Radical Biology and Medicine, 2017, 108, 374-382.	2.9	28
141	Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Molecular Genetics and Metabolism, 2017, 122, 43-50.	1.1	29
142	Targeted mitochondrial therapy using MitoQ shows equivalent renoprotection to angiotensin converting enzyme inhibition but no combined synergy in diabetes. Scientific Reports, 2017, 7, 15190.	3.3	34
143	208â€Cardioprotection by the mitochondria-targeted superoxide generator mitoparaquat in a murine model of acute myocardial ischaemia reperfusion injury. Heart, 2017, 103, A138.3-A139.	2.9	0
144	Focally perfused succinate potentiates brain metabolism in head injury patients. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2626-2638.	4.3	54

#	Article	IF	CITATIONS
145	Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 2016, 535, 561-565.	27.8	333
146	Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Science Signaling, 2016, 9, ra115.	3.6	127
147	A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. British Journal of Nutrition, 2016, 115, 1155-1166.	2.3	38
148	Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovascular Research, 2016, 111, 134-141.	3.8	107
149	Moving Forwards by Blocking Back-Flow. Circulation Research, 2016, 118, 898-906.	4.5	83
150	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metabolism, 2016, 23, 725-734.	16.2	296
151	Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. Bioelectrochemistry, 2016, 111, 23-30.	4.6	14
152	In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder. Free Radical Biology and Medicine, 2016, 96, 1-12.	2.9	42
153	Mitochondrial Diseases: Shortcuts to Therapies and Therapeutic Shortcuts. Molecular Cell, 2016, 64, 5-6.	9.7	2
154	Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease. Free Radical Biology and Medicine, 2016, 100, 1-4.	2.9	9
155	Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radical Biology and Medicine, 2016, 97, 427-440.	2.9	52
156	Assessing the Delivery of Molecules to the Mitochondrial Matrix Using Click Chemistry. ChemBioChem, 2016, 17, 1312-1316.	2.6	17
157	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	28.9	1,396
158	The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biology, 2016, 10, 200-205.	9.0	82
159	Understanding and preventing mitochondrial oxidative damage. Biochemical Society Transactions, 2016, 44, 1219-1226.	3.4	129
160	Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13063-13068.	7.1	300
161	Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Reports, 2016, 14, 2325-2336.	6.4	199
162	The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria. Journal of Biological Chemistry, 2016, 291, 16644-16658.	3.4	54

#	Article	IF	CITATIONS
163	A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 23, 254-263.	16.2	527
164	Assessing the Mitochondrial Membrane Potential in Cells and InÂVivo using Targeted Click Chemistry and Mass Spectrometry. Cell Metabolism, 2016, 23, 379-385.	16.2	78
165	Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biology, 2016, 8, 136-148.	9.0	15
166	Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. Neuropsychopharmacology, 2016, 41, 1751-1758.	5.4	35
167	The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 14-27.	0.8	45
168	Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radical Biology and Medicine, 2015, 89, 883-894.	2.9	111
169	A mitochondria-targeted derivative of ascorbate: MitoC. Free Radical Biology and Medicine, 2015, 89, 668-678.	2.9	54
170	Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS ONE, 2015, 10, e0127310.	2.5	26
171	Effects of the Mitochondria-Targeted Antioxidant Mitoquinone in Murine Acute Pancreatitis. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	29
172	The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1025-1035.	1.0	40
173	Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice. Journal of Neuroscience, 2015, 35, 16213-16220.	3.6	52
174	HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Reports, 2015, 10, 891-899.	6.4	79
175	The mitochondrial dicarboxylate and 2â€oxoglutarate carriers do not transport glutathione. FEBS Letters, 2015, 589, 621-628.	2.8	49
176	The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. American Journal of Physiology - Renal Physiology, 2015, 308, F1155-F1166.	2.7	35
177	Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H651-H663.	3.2	66
178	Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster. Cell Reports, 2015, 11, 1856-1865.	6.4	54
179	Glycolysis and the Pentose Phosphate Pathway after Human Traumatic Brain Injury: Microdialysis Studies Using 1,2- ¹³ C ₂ Glucose. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 111-120.	4.3	82
180	Redox Homeostasis and Mitochondrial Dynamics. Cell Metabolism, 2015, 22, 207-218.	16.2	538

#	Article	IF	CITATIONS
181	Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 136, 769-780.	2.9	332
182	Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages. Journal of Biological Chemistry, 2015, 290, 20348-20359.	3.4	252
183	mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. Cell Reports, 2015, 11, 1614-1624.	6.4	66
184	Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biology, 2015, 5, 163-168.	9.0	159
185	MitoQ modulates oxidative stress and decreases inflammation following hemorrhage. Journal of Trauma and Acute Care Surgery, 2015, 78, 573-579.	2.1	23
186	Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahedron, 2015, 71, 8444-8453.	1.9	32
187	The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. Journal of Heart and Lung Transplantation, 2015, 34, 1471-1480.	0.6	78
188	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
189	Redox Modulation by Reversal of the Mitochondrial Nicotinamide Nucleotide Transhydrogenase. Cell Metabolism, 2015, 22, 363-365.	16.2	26
190	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
191	Targeting Mitochondria with Small Molecules: The Preparation of MitoB and MitoP as Exomarkers of Mitochondrial Hydrogen Peroxide. Methods in Molecular Biology, 2015, 1265, 25-50.	0.9	19
192	Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Caffeic Acid to Mitochondria. Methods in Molecular Biology, 2015, 1265, 73-83.	0.9	2
193	A Novel Class of Mitochondria-Targeted Soft Electrophiles Modifies Mitochondrial Proteins and Inhibits Mitochondrial Metabolism in Breast Cancer Cells through Redox Mechanisms. PLoS ONE, 2015, 10, e0120460.	2.5	11
194	Complex I Deficiency Due to Selective Loss of Ndufs4 in the Mouse Heart Results in Severe Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e94157.	2.5	41
195	6â€S-Nitrosation of a Cysteine Switch on Mitochondrial Complex I Protects from Acute Ischaemia-Reperfusion Damage and Post Myocardial Infarction Heart Failure. Heart, 2014, 100, A3.2-A3.	2.9	0
196	Response to Letter Regarding Article, "Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans― Circulation, 2014, 129, e408.	1.6	2
197	Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. Journal of Hypertension, 2014, 32, 555-564.	0.5	45
198	Defects in Mitochondrial Clearance Predispose Human Monocytes to Interleukin-1β Hypersecretion. Journal of Biological Chemistry, 2014, 289, 5000-5012.	3.4	90

#	Article	IF	CITATIONS
199	<i>In vivo</i> levels of mitochondrial hydrogen peroxide increase with age in mt <scp>DNA</scp> mutator mice. Aging Cell, 2014, 13, 765-768.	6.7	94
200	Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2014, 70, 204-213.	2.9	126
201	Mitochondriaâ€ŧargeted antioxidant (MitoQ) ameliorates ageâ€related arterial endothelial dysfunction in mice. Journal of Physiology, 2014, 592, 2549-2561.	2.9	185
202	A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids. Free Radical Biology and Medicine, 2014, 67, 330-341.	2.9	15
203	Using exomarkers to assess mitochondrial reactive species in vivo. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 923-930.	2.4	55
204	13C-labelled microdialysis studies of cerebral metabolism in TBI patients. European Journal of Pharmaceutical Sciences, 2014, 57, 87-97.	4.0	54
205	Antioxidants as therapies: can we improve on nature?. Free Radical Biology and Medicine, 2014, 66, 20-23.	2.9	120
206	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	27.8	109
207	Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515, 431-435.	27.8	1,989
208	Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator. ACS Medicinal Chemistry Letters, 2014, 5, 1304-1307.	2.8	33
209	Mitochondria selective S â€nitrosation by mitochondriaâ€targeted S â€nitrosothiol protects against postâ€infarct heart failure in mouse hearts. European Journal of Heart Failure, 2014, 16, 712-717.	7.1	39
210	Expanding the Palette of Phenanthridinium Cations. Chemistry - A European Journal, 2014, 20, 3742-3751.	3.3	11
211	Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Molecular and Cellular Neurosciences, 2014, 63, 13-23.	2.2	52
212	The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death and Disease, 2014, 5, e1368-e1368.	6.3	88
213	Targeting Mitochondria-Derived Reactive Oxygen Species to Reduce Epithelial Barrier Dysfunction and Colitis. American Journal of Pathology, 2014, 184, 2516-2527.	3.8	134
214	The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radical Research, 2014, 48, 1232-1246.	3.3	58
215	Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2014, 22, 5320-5328.	3.0	32
216	A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radical Biology and Medicine, 2014, 67, 437-450.	2.9	44

#	Article	IF	CITATIONS
217	Mitochondrial Dysfunction Indirectly Elevates ROS Production by the Endoplasmic Reticulum. Cell Metabolism, 2013, 18, 145-146.	16.2	167
218	P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3458-3465.	2.4	21
219	Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Research in Cardiology, 2013, 108, 337.	5.9	51
220	Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis. Cell, 2013, 152, 504-518.	28.9	176
221	Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Medicine, 2013, 11, 178.	5.5	153
222	Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. British Journal of Anaesthesia, 2013, 110, 472-480.	3.4	255
223	Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Annals of Neurology, 2013, 74, 815-825.	5.3	114
224	Radiosynthesis of 11-[¹⁸ F]fluoroundecyltriphenylphosphonium (MitoF) as a potential mitochondria-specific positron emission tomography radiotracer. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 717-721.	1.0	6
225	Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pK a: implications for the design of mitochondrial probes and therapies. Journal of Bioenergetics and Biomembranes, 2013, 45, 165-173.	2.3	52
226	KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation. Cell, 2013, 155, 765-777.	28.9	154
227	Mitochondrial ROS Fire Up T Cell Activation. Immunity, 2013, 38, 201-202.	14.3	83
228	Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biology, 2013, 1, 86-93.	9.0	192
229	Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine, 2013, 19, 753-759.	30.7	521
230	Reaction between Peroxynitrite and Triphenylphosphonium-Substituted Arylboronic Acid Isomers: Identification of Diagnostic Marker Products and Biological Implications. Chemical Research in Toxicology, 2013, 26, 856-867.	3.3	44
231	The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 174-182.	3.8	115
232	Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clinical Science, 2013, 124, 403-411.	4.3	61
233	Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans. Circulation, 2013, 128, 702-712.	1.6	218
234	Re-Directing an Alkylating Agent to Mitochondria Alters Drug Target and Cell Death Mechanism. PLoS ONE, 2013, 8, e60253.	2.5	36

#	Article	IF	CITATIONS
235	Mitochondriaâ€targeted antioxidant therapy with MitoQ ameliorates ageâ€related vascular endothelial dysfunction. FASEB Journal, 2013, 27, 1125.10.	0.5	1
236	Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 325-334.	2.4	57
237	Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovascular Research, 2012, 93, 445-453.	3.8	64
238	Mitochondrial redox signalling at a glance. Journal of Cell Science, 2012, 125, 801-806.	2.0	225
239	A Mitochondria-Targeted Macrocyclic Mn(II) Superoxide Dismutase Mimetic. Chemistry and Biology, 2012, 19, 1237-1246.	6.0	50
240	Modulating Mitochondrial Intracellular Location as a Redox Signal. Science Signaling, 2012, 5, pe39.	3.6	82
241	New tricks from an old dog: Mitochondrial redox signaling in cellular inflammation. Seminars in Immunology, 2012, 24, 384-392.	5.6	53
242	Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radical Research, 2012, 46, 600-611.	3.3	33
243	Mitochondrial pharmacology. Trends in Pharmacological Sciences, 2012, 33, 341-352.	8.7	430
244	Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. Journal of Hepatology, 2012, 57, 852-859.	3.7	70
245	DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88. Cell, 2012, 149, 847-859.	28.9	526
246	A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells. Free Radical Biology and Medicine, 2012, 53, 544-553.	2.9	63
247	Mitochondrial Thiols in Antioxidant Protection and Redox Signaling: Distinct Roles for Glutathionylation and Other Thiol Modifications. Antioxidants and Redox Signaling, 2012, 16, 476-495.	5.4	295
248	Inactivation of Pyruvate Dehydrogenase Kinase 2 by Mitochondrial Reactive Oxygen Species. Journal of Biological Chemistry, 2012, 287, 35153-35160.	3.4	45
249	Mitochondrial redox signalling at a glance. Journal of Cell Science, 2012, 125, 1837-1837.	2.0	16
250	Mitochondrial †flashes': a radical concept repHined. Trends in Cell Biology, 2012, 22, 503-508.	7.9	74
251	Mitochondrial oxidative stress and the metabolic syndrome. Trends in Endocrinology and Metabolism, 2012, 23, 429-434.	7.1	122
252	Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore. Journal of the American Chemical Society, 2012, 134, 758-761.	13.7	115

#	Article	IF	CITATIONS
253	Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nature Protocols, 2012, 7, 946-958.	12.0	108
254	The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/–/ApoE–/– mice. Free Radical Biology and Medicine, 2012, 52, 841-849.	2.9	154
255	Mitochondria-targeted Antioxidants Protect Pancreatic β-cells against Oxidative Stress and Improve Insulin Secretion in Glucotoxicity and Glucolipotoxicity. Cellular Physiology and Biochemistry, 2011, 28, 873-886.	1.6	101
256	The Mitochondria-Targeted Antioxidant MitoQ Prevents Loss of Spatial Memory Retention and Early Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 15703-15715.	3.6	354
257	Measurement of H2O2 within Living Drosophila during Aging Using a Ratiometric Mass Spectrometry Probe Targeted to the Mitochondrial Matrix. Cell Metabolism, 2011, 13, 340-350.	16.2	267
258	Unraveling the Biological Roles of Reactive Oxygen Species. Cell Metabolism, 2011, 13, 361-366.	16.2	661
259	An investigation of the effects of MitoQ on human peripheral mononuclear cells. Free Radical Research, 2011, 45, 351-358.	3.3	17
260	Mitochondria-Targeted Small Molecule Therapeutics and Probes. Antioxidants and Redox Signaling, 2011, 15, 3021-3038.	5.4	344
261	Characterization of mice with a deletion of protein kinase G type I in cardiomyocytes and the effect on cardioprotection through either postconditioning or mitochondria-targeted S-nitrosothiol. BMC Pharmacology, 2011, 11, .	0.4	0
262	Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology, 2011, 54, 153-163.	7.3	98
263	Proteomic approaches to the characterization of protein thiol modification. Current Opinion in Chemical Biology, 2011, 15, 120-128.	6.1	90
264	Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Research, 2011, 21, 817-834.	12.0	150
265	Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Human Molecular Genetics, 2011, 20, 322-335.	2.9	48
266	The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 682-692.	2.5	66
267	Amyloid β-Induced Impairments in Hippocampal Synaptic Plasticity Are Rescued by Decreasing Mitochondrial Superoxide. Journal of Neuroscience, 2011, 31, 5589-5595.	3.6	132
268	Mitochondria-targeted antioxidants as therapies. Discovery Medicine, 2011, 11, 106-14.	0.5	113
269	Prevention of diabetic nephropathy in Ins2+/â^ AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochemical Journal, 2010, 432, 9-19.	3.7	189
270	022â€MitoQ10 decreases AMPK activation in endothelial cells from patients with coronary artery disease and diabetes. Heart, 2010, 96, A15.1-A15.	2.9	0

#	Article	IF	CITATIONS
271	021â€Therapeutic effects of MitoQ10 on hypertension and cardiac hypertrophy. Heart, 2010, 96, A14.2-A15.	2.9	0
272	Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radical Biology and Medicine, 2010, 48, 161-172.	2.9	193
273	A doubleâ€blind, placeboâ€controlled study to assess the mitochondriaâ€ŧargeted antioxidant MitoQ as a diseaseâ€modifying therapy in Parkinson's disease. Movement Disorders, 2010, 25, 1670-1674.	3.9	467
274	The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver International, 2010, 30, 1019-1026.	3.9	313
275	Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS Journal, 2010, 277, 1465-1480.	4.7	198
276	Complementation of coenzyme Qâ€deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. FEBS Journal, 2010, 277, 2067-2082.	4.7	10
277	A redox switch in angiotensinogen modulates angiotensin release. Nature, 2010, 468, 108-111.	27.8	191
278	Animal and human studies with the mitochondriaâ€ŧargeted antioxidant MitoQ. Annals of the New York Academy of Sciences, 2010, 1201, 96-103.	3.8	428
279	DNA Damage Links Mitochondrial Dysfunction to Atherosclerosis and the Metabolic Syndrome. Circulation Research, 2010, 107, 1021-1031.	4.5	199
280	Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Human Molecular Genetics, 2010, 19, 3413-3429.	2.9	135
281	Identification of S-nitrosated mitochondrial proteins by <i>S</i> -nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochemical Journal, 2010, 430, 49-59.	3.7	130
282	Measuring Mitochondrial Protein Thiol Redox State. Methods in Enzymology, 2010, 474, 123-147.	1.0	28
283	Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1009-1017.	2.4	101
284	Quantification and identification of mitochondrial proteins containing vicinal dithiols. Archives of Biochemistry and Biophysics, 2010, 504, 228-235.	3.0	29
285	Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nature Protocols, 2010, 5, 342-356.	12.0	50
286	Mitochondria-Targeted Antioxidants Protect Against Amyloid-β Toxicity in Alzheimer's Disease Neurons. Journal of Alzheimer's Disease, 2010, 20, S609-S631.	2.6	404
287	MitoQ protects against cold ischemic injury in renal cells and rat kidneys. FASEB Journal, 2010, 24, 1059.8.	0.5	0
288	Can antioxidants be effective therapeutics?. Current Opinion in Investigational Drugs, 2010, 11, 426-31.	2.3	34

#	Article	IF	CITATIONS
289	Chapter 19 Measuring Redox Changes to Mitochondrial Protein Thiols With Redox Difference Gel Electrophoresis (Redoxâ€Dige). Methods in Enzymology, 2009, 456, 343-361.	1.0	22
290	A mitochondria-targeted <i>S</i> -nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10764-10769.	7.1	205
291	Mitochondria-Targeted Antioxidant MitoQ ₁₀ Improves Endothelial Function and Attenuates Cardiac Hypertrophy. Hypertension, 2009, 54, 322-328.	2.7	319
292	The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells. Biochemical Journal, 2009, 419, 427-436.	3.7	23
293	MitoQ administration prevents endotoxin-induced cardiac dysfunction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1095-R1102.	1.8	125
294	Do organellar genomes function as long-term redox damage sensors?. Trends in Genetics, 2009, 25, 253-261.	6.7	26
295	Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. Free Radical Biology and Medicine, 2009, 46, 105-109.	2.9	106
296	Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization. Tetrahedron, 2009, 65, 8154-8160.	1.9	29
297	How mitochondria produce reactive oxygen species. Biochemical Journal, 2009, 417, 1-13.	3.7	6,321
298	Chapter 22 The Uptake and Interactions of the Redox Cycler Paraquat with Mitochondria. Methods in Enzymology, 2009, 456, 395-417.	1.0	26
299	Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radical Research, 2009, 43, 4-12.	3.3	119
300	The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Free Radical Research, 2009, 43, 323-328.	3.3	65
301	Mitochondriaa neglected drug target. Current Opinion in Investigational Drugs, 2009, 10, 1022-4.	2.3	21
302	Mitochondriaâ€Targeted Antioxidants in the Treatment of Disease. Annals of the New York Academy of Sciences, 2008, 1147, 105-111.	3.8	96
303	Neonatal rat hypoxia–ischemia: Effect of the antiâ€oxidant mitoquinol, and Sâ€PBN. Pediatrics International, 2008, 50, 481-488.	0.5	22
304	A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radical Biology and Medicine, 2008, 44, 1406-1419.	2.9	210
305	The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide–peptidoglycan model of sepsis. Free Radical Biology and Medicine, 2008, 45, 1559-1565.	2.9	224
306	Targeting lipophilic cations to mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1028-1031.	1.0	455

#	Article	IF	CITATIONS
307	Toward a Control Theory Analysis of Aging. Annual Review of Biochemistry, 2008, 77, 777-798.	11.1	43
308	Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochemical Journal, 2008, 411, 633-645.	3.7	168
309	Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Research, 2008, 36, 3926-3938.	14.5	195
310	Complex I within Oxidatively Stressed Bovine Heart Mitochondria Is Glutathionylated on Cys-531 and Cys-704 of the 75-kDa Subunit. Journal of Biological Chemistry, 2008, 283, 24801-24815.	3.4	167
311	Complex I Is the Major Site of Mitochondrial Superoxide Production by Paraquat. Journal of Biological Chemistry, 2008, 283, 1786-1798.	3.4	481
312	Interaction of the Mitochondria-targeted Antioxidant MitoQ with Phospholipid Bilayers and Ubiquinone Oxidoreductases*. Journal of Biological Chemistry, 2007, 282, 14708-14718.	3.4	213
313	Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radical Research, 2007, 41, 1041-1046.	3.3	3
314	The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. Journal of Cell Biology, 2007, 177, 1029-1036.	5.2	510
315	Detection of Reactive Oxygen Species-sensitive Thiol Proteins by Redox Difference Gel Electrophoresis. Journal of Biological Chemistry, 2007, 282, 22040-22051.	3.4	133
316	Mitochondrial targeting of quinones: Therapeutic implications. Mitochondrion, 2007, 7, S94-S102.	3.4	118
317	Targeting lipoic acid to mitochondria: Synthesis and characterization of a triphenylphosphonium-conjugated α-lipoyl derivative. Free Radical Biology and Medicine, 2007, 42, 1766-1780.	2.9	75
318	Mitochondrial uncouplers with an extraordinary dynamic range. Biochemical Journal, 2007, 407, 129-140.	3.7	120
319	Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annual Review of Pharmacology and Toxicology, 2007, 47, 629-656.	9.4	1,010
320	β-Amyloid Mediated Nitration of Manganese Superoxide Dismutase. American Journal of Pathology, 2006, 168, 1608-1618.	3.8	129
321	Measurement of Protein Glutathionylation. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 28, Unit6.11.	1.1	2
322	Overview of Protein Glutathionylation. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 28, Unit6.10.	1.1	4
323	Activation of Mitogen-Activated Protein Kinases by Lysophosphatidylcholine-Induced Mitochondrial Reactive Oxygen Species Generation in Endothelial Cells. American Journal of Pathology, 2006, 168, 1737-1748.	3.8	86
324	Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic–ischemic striatal injury in neonatal rats: A dose–response and stereological study. Experimental Neurology, 2006, 199, 513-519.	4.1	30

#	Article	IF	CITATIONS
325	Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal. Biochemistry (Moscow), 2006, 71, 60-67.	1.5	28
326	Targeting Dinitrophenol to Mitochondria: Limitations to the Development of a Self-limiting Mitochondrial Protonophore. Bioscience Reports, 2006, 26, 231-243.	2.4	63
327	The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mechanisms of Ageing and Development, 2006, 127, 356-370.	4.6	124
328	Mitochondrial production of oxidants is necessary for physiological calcium oscillations. Journal of Cellular Physiology, 2006, 206, 487-494.	4.1	55
329	Accumulation of lipophilic dications by mitochondria and cells. Biochemical Journal, 2006, 400, 199-208.	3.7	105
330	Induction of mitochondrial ROS production by electrophilic lipids: a new pathway of redox signaling?. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1754-H1755.	3.2	25
331	Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15038-15043.	7.1	684
332	Persistent S-Nitrosation of Complex I and Other Mitochondrial Membrane Proteins by S-Nitrosothiols but Not Nitric Oxide or Peroxynitrite. Journal of Biological Chemistry, 2006, 281, 10056-10065.	3.4	183
333	Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19689-19694.	7.1	147
334	special feature: from in vitro curiosity to contributor to cell pathology. Biochemist, 2006, 28, 33-36.	0.5	0
335	Disulphide formation on mitochondrial protein thiols. Biochemical Society Transactions, 2005, 33, 1390.	3.4	65
336	Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Cell Death and Differentiation, 2005, 12, 1442-1444.	11.2	47
337	Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: a proposed adaptive response to mitochondrial redox imbalance. Free Radical Biology and Medicine, 2005, 38, 644-654.	2.9	37
338	Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mechanisms of Ageing and Development, 2005, 126, 982-986.	4.6	73
339	Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Moscow), 2005, 70, 222-230.	1.5	354
340	Inhibition of complex I of the electron transport chain causes O2â^'Âmediated mitochondrial outgrowth. American Journal of Physiology - Cell Physiology, 2005, 288, C1440-C1450.	4.6	260
341	A new hypertrophic mechanism of serotonin in cardiac myocytes: receptorâ€independent ROS generation. FASEB Journal, 2005, 19, 1-15.	0.5	91
342	Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor κB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochemical Journal, 2005, 389, 83-89.	3.7	142

#	Article	IF	CITATIONS
343	Glutathionylation of Mitochondrial Proteins. Antioxidants and Redox Signaling, 2005, 7, 999-1010.	5.4	181
344	Targeting an antioxidant to mitochondria decreases cardiac ischemiaâ€reperfusion injury. FASEB Journal, 2005, 19, 1088-1095.	0.5	556
345	Interactions of Mitochondria-targeted and Untargeted Ubiquinones with the Mitochondrial Respiratory Chain and Reactive Oxygen Species. Journal of Biological Chemistry, 2005, 280, 21295-21312.	3.4	318
346	Synthesis and Characterization of a Triphenylphosphonium-conjugated Peroxidase Mimetic. Journal of Biological Chemistry, 2005, 280, 24113-24126.	3.4	117
347	The concomitant expression and availability of conventional and alternative, cyanide-insensitive, respiratory pathways in Candida albicans. Mitochondrion, 2005, 5, 200-211.	3.4	41
348	A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIFâ€1α. FEBS Letters, 2005, 579, 2669-2674.	2.8	111
349	Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochemical Journal, 2004, 383, 457-468.	3.7	81
350	Mitochondria-derived Reactive Oxygen Species Mediate Blue Light–induced Death of Retinal Pigment Epithelial Cells¶. Photochemistry and Photobiology, 2004, 79, 470.	2.5	210
351	Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption. American Journal of Physiology - Renal Physiology, 2004, 286, G521-G527.	3.4	75
352	Mitochondrial Function Is Required for Hydrogen Peroxide-induced Growth Factor Receptor Transactivation and Downstream Signaling. Journal of Biological Chemistry, 2004, 279, 35079-35086.	3.4	103
353	Targeting Coenzyme Q Derivatives to Mitochondria. Methods in Enzymology, 2004, 382, 45-67.	1.0	80
354	Glutaredoxin 2 Catalyzes the Reversible Oxidation and Glutathionylation of Mitochondrial Membrane Thiol Proteins. Journal of Biological Chemistry, 2004, 279, 47939-47951.	3.4	358
355	Prevention of Mitochondrial Oxidative Damage as a Therapeutic Strategy in Diabetes. Diabetes, 2004, 53, S110-S118.	0.6	401
356	Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Archives of Biochemistry and Biophysics, 2004, 423, 47-56.	3.0	245
357	Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Letters, 2004, 571, 9-16.	2.8	170
358	Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation. FEBS Letters, 2004, 556, 180-186.	2.8	54
359	Investigating mitochondrial radical production using targeted probes. Biochemical Society Transactions, 2004, 32, 1011-1014.	3.4	17
360	Cell-penetrating peptides are excluded from the mitochondrial matrix. Biochemical Society Transactions, 2004, 32, 1072-1074.	3.4	13

#	Article	IF	CITATIONS
361	Mitochondriaâ€derived Reactive Oxygen Species Mediate Blue Lightâ€induced Death of Retinal Pigment Epithelial Cells [¶] . Photochemistry and Photobiology, 2004, 79, 470-475.	2.5	14
362	Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochemical Society Symposia, 2004, 71, 203-213.	2.7	151
363	Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochemical Pharmacology, 2003, 65, 67-74.	4.4	116
364	Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-5-on-8-oxy)butyl]-triphenylphosj iodide. FEBS Journal, 2003, 270, 2827-2836.	phouzium	21
365	MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2003, 2, 141-143.	6.7	192
366	Reversible Glutathionylation of Complex I Increases Mitochondrial Superoxide Formation. Journal of Biological Chemistry, 2003, 278, 19603-19610.	3.4	357
367	Interactions of Mitochondrial Thiols with Nitric Oxide. Antioxidants and Redox Signaling, 2003, 5, 291-305.	5.4	74
368	Mitochondriaâ€ŧargeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB Journal, 2003, 17, 1-10.	0.5	324
369	Delivery of bioactive molecules to mitochondria in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5407-5412.	7.1	638
370	Superoxide Activates Uncoupling Proteins by Generating Carbon-centered Radicals and Initiating Lipid Peroxidation. Journal of Biological Chemistry, 2003, 278, 48534-48545.	3.4	283
371	Does interplay between nitric oxide and mitochondria affect hypoxia-inducible transcription factor-1 activity?. Biochemical Journal, 2003, 376, e5-e6.	3.7	8
372	Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences. Biochemical Society Transactions, 2003, 31, 1295-1299.	3.4	45
373	Specific Modification of Mitochondrial Protein Thiols in Response to Oxidative Stress. Journal of Biological Chemistry, 2002, 277, 17048-17056.	3.4	173
374	Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side. Journal of Biological Chemistry, 2002, 277, 47129-47135.	3.4	355
375	Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 73-80.	1.0	80
376	How mitochondrial damage affects cell function. Journal of Biomedical Science, 2002, 9, 475-487.	7.0	128
377	Prevention of Mitochondrial Oxidative Damage Using Targeted Antioxidants. Annals of the New York Academy of Sciences, 2002, 959, 263-274.	3.8	119
378	How Mitochondrial Damage Affects Cell Function. Journal of Biomedical Science, 2002, 9, 475-487.	7.0	66

#	Article	IF	CITATIONS
379	SYNTHESIS, CHARACTERIZATION, AND BIOLOGICAL PROPERTIES OF A FULLERENE TRIPHENYLPHOSPHONIUM SALT. Fullerenes, Nanotubes, and Carbon Nanostructures, 2001, 9, 339-350.	0.6	7
380	Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Letters, 2001, 503, 46-50.	2.8	78
381	How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1504, 1-11.	1.0	54
382	Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opinion on Biological Therapy, 2001, 1, 753-764.	3.1	65
383	Ferredoxin reductase affects p53-dependent, 5-fluorouracil–induced apoptosis in colorectal cancer cells. Nature Medicine, 2001, 7, 1111-1117.	30.7	389
384	An antigenomic strategy for treating heteroplasmic mtDNA disorders. Advanced Drug Delivery Reviews, 2001, 49, 121-125.	13.7	30
385	Targeting large molecules to mitochondria. Advanced Drug Delivery Reviews, 2001, 49, 189-198.	13.7	58
386	Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radical Biology and Medicine, 2001, 31, 181-190.	2.9	112
387	Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Research, 2001, 29, 1852-1863.	14.5	151
388	Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells. Journal of Biological Chemistry, 2001, 276, 4588-4596.	3.4	960
389	The Essential Function of the Small Tim Proteins in the TIM22 Import Pathway Does Not Depend on Formation of the Soluble 70-Kilodalton Complex. Molecular and Cellular Biology, 2001, 21, 6132-6138.	2.3	32
390	The synthesis and antibacterial activity of totarol derivatives. part 3: modification of ring-B. Bioorganic and Medicinal Chemistry, 2000, 8, 1663-1675.	3.0	19
391	Mitochondrially targeted antioxidants and thiol reagents. Free Radical Biology and Medicine, 2000, 28, 1547-1554.	2.9	79
392	Drug delivery to mitochondria: the key to mitochondrial medicine. Advanced Drug Delivery Reviews, 2000, 41, 235-250.	13.7	398
393	Tim18p, a New Subunit of the TIM22 Complex That Mediates Insertion of Imported Proteins into the Yeast Mitochondrial Inner Membrane. Molecular and Cellular Biology, 2000, 20, 1187-1193.	2.3	99
394	Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Letters, 2000, 475, 267-272.	2.8	207
395	Mitochondrial import of the long and short isoforms of human uncoupling protein 3. FEBS Letters, 2000, 465, 135-140.	2.8	13
396	Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations. FEBS Journal, 1999, 259, 462-469.	0.2	86

#	Article	IF	CITATIONS
397	Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. FEBS Journal, 1999, 262, 108-116.	0.2	153
398	Selective targeting of an antioxidant to mitochondria. FEBS Journal, 1999, 263, 709-716.	0.2	409
399	Protein carbonyl formation and tyrosine nitration as markers of oxidative damage during ischaemia-reperfusion injury to rat sciatic nerve. Neuroscience, 1999, 94, 909-916.	2.3	43
400	Nitric oxide and cell death. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 401-414.	1.0	371
401	Peroxynitrite. General Pharmacology, 1998, 31, 179-186.	0.7	165
402	Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. FEBS Journal, 1998, 257, 192-201.	0.2	141
403	INDUCTION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION BY PEROXYNITRITE. Biochemical Society Transactions, 1997, 25, 383S-383S.	3.4	Ο
404	Induction of the mitochondrial permeability transition by peroxynitrite. Biochemical Society Transactions, 1997, 25, 909-914.	3.4	58
405	Labeling of Mitochondrial Proteins in Living Cells by the Thiol Probe Thiobutyltriphenylphosphonium Bromide. Archives of Biochemistry and Biophysics, 1997, 339, 33-39.	3.0	42
406	Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Letters, 1997, 418, 282-286.	2.8	161
407	Characterization of the erythrocyte superoxide dismutase allozymes in the deerCervus elaphus. Animal Genetics, 1997, 28, 299-301.	1.7	2
408	Selective targeting of bioactive compounds to mitochondria. Trends in Biotechnology, 1997, 15, 326-330.	9.3	322
409	The effect on mitochondrial function of the tRNA Ser(UCN)/COI A7445G mtDNA point mutation associated with maternallyâ€inherited sensorineural deafness. IUBMB Life, 1997, 42, 567-575.	3.4	5
410	Exposure to the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and nitric oxide simultaneously causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Biochemical Pharmacology, 1996, 51, 267-273.	4.4	46
411	Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochemical Pharmacology, 1996, 52, 1047-1055.	4.4	83
412	Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochemical Journal, 1996, 318, 401-407.	3.7	163
413	PEROXYNITRITE FORMATION AND MITOCHONDRIAL CALCIUM EFFLUX MAY BE INVOLVED IN CELL DEATH CAUSED BY THE PARKINSONIAN NEUROTOXIN MPP+. Biochemical Society Transactions, 1996, 24, 544S-544S.	3.4	0
414	MITOCHONDRIAL TURNOVER AND DEGRADATION DURING APOPTOSIS IN PC12 CELLS. Biochemical Society Transactions, 1996, 24, 544S-544S.	3.4	0

#	Article	IF	CITATIONS
415	Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. IUBMB Life, 1996, 40, 527-534.	3.4	41
416	Enhanced Mitochondrial Radical Production in Patients with Rheumatoid Arthritis Correlates with Elevated Levels of Tumor Necrosis Factor alpha in Plasma. Free Radical Research, 1996, 25, 161-169.	3.3	73
417	Inhibition of complex I by hydrophobic analogues of N-methyl-4-phenylpyridinium (MPP+) and the use of an ion-selective electrode to measure their accumulation by mitochondria and electron-transport particles. Biochemical Journal, 1995, 306, 359-365.	3.7	34
418	Synthesis and Characterization of Thiobutyltriphenylphosphonium Bromide, a Novel Thiol Reagent Targeted to the Mitochondrial Matrix. Archives of Biochemistry and Biophysics, 1995, 322, 60-68.	3.0	97
419	Peroxynitrite Formed by Simultaneous Nitric Oxide and Superoxide Generation Causes Cyclosporin-A-Sensitive Mitochondrial Calcium Efflux and Depolarisation. FEBS Journal, 1995, 234, 231-239.	0.2	125
420	Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Letters, 1994, 345, 237-240.	2.8	129
421	Cyclosporin A blocks 6-hydroxydopamine-induced efflux of Ca2+ from mitochondria without inactivating the mitochondrial inner-membrane pore. Biochemical Journal, 1994, 297, 151-155.	3.7	29
422	Studies on the rapid stimulation of mitochondrial respiration by thyroid hormones. European Journal of Endocrinology, 1992, 127, 542-546.	3.7	45
423	Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode. Biochemical Journal, 1992, 288, 439-443.	3.7	54
424	Effects of chronic ethanol feeding on rat liver mitochondrial energy metabolism. Biochemical Pharmacology, 1992, 43, 2663-2667.	4.4	18
425	Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation. Biochemical Pharmacology, 1992, 43, 1203-1208.	4.4	31
426	Slip and leak in mitochondrial oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 123-141.	1.0	136
427	Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. FEBS Journal, 1988, 173, 637-644.	0.2	46
428	The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. FEBS Journal, 1988, 173, 645-651.	0.2	51
429	The control of electron flux through cytochrome oxidase. Biochemical Journal, 1987, 243, 499-505.	3.7	59
430	CONTROL OF ELECTRON FLUX THROUGH THE RESPIRATORY CHAIN IN MITOCHONDRIA AND CELLS. Biological Reviews, 1987, 62, 141-193.	10.4	233
431	Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Nature, 1987, 329, 170-172.	27.8	62
432	The control of electron flux through cytochrome oxidase. Biochemical Society Transactions, 1986, 14, 887-888.	3.4	5

#	Article	IF	CITATIONS
433	Substrate dependence of the relationship between membrane potential and respiration rate in mitochondria. Biochemical Society Transactions, 1986, 14, 1042-1043.	3.4	7
434	Thermodynamic limits to the stoichiometry of H+ pumping by mitochondrial cytochrome oxidase. FEBS Letters, 1985, 187, 16-20.	2.8	16
435	Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. , 0, , 575-587.		3